Fig 7 - available via license: CC BY
Content may be subject to copyright.
Mean opsonization of erythrocytes and C. albicans cells with different regimes and possible attack thresholds indicated. Same data as in Fig 6. The two dotted horizontal lines represent possible attack thresholds. Upper line, optimal threshold derived from simulations on E. coli; lower line, already a single C3b molecule is sensed on the surface. Cells with values above those lines would be attacked. Green, non-successful crypsis; blue, regime of successful crypsis; red, autoreactivity. These regimes are indicated for the upper attack threshold. Using the lower threshold, autoreactivity may occur even for low pathogen concentrations. For any of these thresholds and for any other threshold tested (see subfigures of Fig 6), host opsonization drastically increases for high pathogen concentrations, making autoreactivity nearly unavoidable. https://doi.org/10.1371/journal.pone.0212187.g007

Mean opsonization of erythrocytes and C. albicans cells with different regimes and possible attack thresholds indicated. Same data as in Fig 6. The two dotted horizontal lines represent possible attack thresholds. Upper line, optimal threshold derived from simulations on E. coli; lower line, already a single C3b molecule is sensed on the surface. Cells with values above those lines would be attacked. Green, non-successful crypsis; blue, regime of successful crypsis; red, autoreactivity. These regimes are indicated for the upper attack threshold. Using the lower threshold, autoreactivity may occur even for low pathogen concentrations. For any of these thresholds and for any other threshold tested (see subfigures of Fig 6), host opsonization drastically increases for high pathogen concentrations, making autoreactivity nearly unavoidable. https://doi.org/10.1371/journal.pone.0212187.g007

Source publication
Article
Full-text available
Molecular mimicry is the formation of specific molecules by microbial pathogens to avoid recognition and attack by the immune system of the host. Several pathogenic Ascomycota and Zygomycota show such a behaviour by utilizing human complement factor H to hide in the blood stream. We call this type of mimicry molecular crypsis. Such a crypsis can re...

Similar publications

Preprint
Full-text available
Molecular mimicry is the formation of specific molecules by microbial pathogens to avoid recognition and attack by the immune system of the host. Several pathogenic Ascomycota and Zygomycota show such a behaviour by utilizing human complement factor H to hide in the blood stream. We call this type of mimicry molecular crypsis. Such a crypsis can re...

Citations

... Altogether, a competent complement system that spans all three pathways forms a pivotal junction in the fight against pathogens. Knowing this importance, computational models have been assembled to shed light on the dynamics of complement activation and propagation [41][42][43][44][45][46]. However, to our knowledge, a comprehensive model that covers all three pathways of the complement system has not been developed. ...
Article
Full-text available
The complement system is assembled from a network of proteins that function to bring about the first line of defense of the body against invading pathogens. However, complement deficiencies or invasive pathogens can hijack complement to subsequently increase susceptibility of the body to infections. Moreover, invasive pathogens are increasingly becoming resistant to the currently available therapies. Hence, it is important to gain insights into the highly dynamic interaction between complement and invading microbes in the frontlines of immunity. Here, we developed a mathematical model of the complement system composed of 670 ordinary differential equations with 328 kinetic parameters, which describes all three complement pathways (alternative, classical, and lectin) and includes description of mannose-binding lectin, collectins, ficolins, factor H-related proteins, immunoglobulin M, and pentraxins. Additionally, we incorporate two pathogens: (type 1) complement susceptible pathogen and (type 2) Neisseria meningitidis located in either nasopharynx or bloodstream. In both cases, we generate time profiles of the pathogen surface occupied by complement components and the membrane attack complex (MAC). Our model shows both pathogen types in bloodstream are saturated by complement proteins, whereas MACs occupy <<1.0% of the pathogen surface. Conversely, the MAC production in nasopharynx occupies about 1.5–10% of the total N. meningitidis surface, thus making nasal MAC levels at least about eight orders of magnitude higher. Altogether, we predict complement-imbalance, favoring overactivation, is associated with nasopharynx homeostasis. Conversely, orientating toward complement-balance may cause disruption to the nasopharynx homeostasis. Thus, for sporadic meningococcal disease, our model predicts rising nasal levels of complement regulators as early infection biomarkers.
... Perfect resemblance of the model signals by the mimic is possible in principle, no matter how sophisticated the classifier is, but may never be achieved. This is because the dupe and mimic constantly adapt and there is always an arms race in identifying and hiding, being attacked and evading [77,81]. For example, in the case of complement evasion, most microorganisms are able to remove complement factors (which would identify them as pathogens) by utilizing the host-protecting complement factor H [137]. ...
... The term 'molecular mimicry' had been introduced by Damian in 1964 [22]. Recently, Lang et al. used signaling theory and ODEs to describe and analyze the attack decision by the host in the case of molecular crypsis [77]. That decision is non-trivial, because the two criteria of minimizing false negatives (foreign cells erroneously recognized as self) and minimizing false positives (own cells erroneously recognized as foreign) cannot be met simultaneously. ...
... Only a high investment is effective and leads to the global maximum. For further explanations, see section "Molecular mimicry and crypsis" and Lang et al. [77] employed to study the dynamics of bacteria [19,88], fungi [79], viruses (for review, see [8,12,25,52,101,139]), and has also been applied to other areas such as cell division mechanisms (e.g., [53, 63, 65-67, 129, 130]). ...
Article
Full-text available
Pathogenic microorganisms entail enormous problems for humans, livestock, and crop plants. A better understanding of the different infection strategies of the pathogens enables us to derive optimal treatments to mitigate infectious diseases or develop vaccinations preventing the occurrence of infections altogether. In this review, we highlight the current trends in mathematical modeling approaches and related methods used for understanding host–pathogen interactions. Since these interactions can be described on vastly different temporal and spatial scales as well as abstraction levels, a variety of computational and mathematical approaches are presented. Particular emphasis is placed on dynamic optimization, game theory, and spatial modeling, as they are attracting more and more interest in systems biology. Furthermore, these approaches are often combined to illuminate the complexities of the interactions between pathogens and their host. We also discuss the phenomena of molecular mimicry and crypsis as well as the interplay between defense and counter defense. As a conclusion, we provide an overview of method characteristics to assist non-experts in their decision for modeling approaches and interdisciplinary understanding.
... In defining a biological network in a quantitative manner, ODE models can enable to predict concentrations, kinetics and behavior of the network components, building hypotheses on disease causation, progression and interference, which can be tested experimentally (Enderling and Chaplain, 2014). In line with this, models of the complement system based on ODEs have been designed to mechanistically deconstruct segments of the complement system under homeostasis and infection (Hirayama et al., 1996;Korotaevskiy et al., 2009;Liu et al., 2011;Zewde et al., 2016;Sagar et al., 2017;Lang et al., 2019). ...
Article
Full-text available
Streptococcus pneumoniae contributes to a range of infections, including meningitis, pneumonia, otitis media, and sepsis. Infections by this bacterium have been associated with the phenomenon of molecular mimicry, which, in turn, may contribute to the induction of autoimmunity. In this study, we utilized a bioinformatics approach to investigate the potential for S. pneumoniae to incite autoimmunity via molecular mimicry. We identified 13 S. pneumoniae proteins that have significant sequence similarity to human proteins, with 11 of them linked to autoimmune disorders such as psoriasis, rheumatoid arthritis, and diabetes. Using in silico tools, we predicted the sequence as well as the structural homology among these proteins. Database mining was conducted to establish links between these proteins and autoimmune disorders. The antigenic, non-allergenic, and immunogenic sequence mimics were employed to design and validate an immune response via vaccine construct design. Mimic-based vaccine construct can prove effective for immunization against the S. pneumoniae infections. Immune response simulation and binding affinity was assessed through the docking of construct C8 to human leukocyte antigen (HLA) molecules and TLR4 receptor, with promising results. Additionally, these mimics were mapped as conserved regions on their respective proteins, suggesting their functional importance in S. pneumoniae pathogenesis. This study highlights the potential for S. pneumoniae to trigger autoimmunity via molecular mimicry and the possibility of vaccine design using these mimics for triggering defense response.
Article
Full-text available
The complement system is an intricate defense network that rapidly removes invading pathogens. Although many complement regulators are present to protect host cells under homeostasis, the impairment of Factor H (FH) regulatory mechanism has been associated with several autoimmune and inflammatory diseases. To understand the dynamics involved in the pivotal balance between activation and regulation, we have developed a comprehensive computational model of the alternative and classical pathways of the complement system. The model is composed of 290 ordinary differential equations with 142 kinetic parameters that describe the state of complement system under homeostasis and disorder through FH impairment. We have evaluated the state of the system by generating concentration-time profiles for the biomarkers C3, C3a-desArg, C5, C5a-desArg, Factor B (FB), Ba, Bb, and fC5b-9 that are influenced by complement dysregulation. We show that FH-mediated disorder induces substantial levels of complement activation compared to homeostasis, by generating reduced levels of C3 and FB, and to a lesser extent C5, and elevated levels of C3a-desArg, Ba, Bb, C5a-desArg, and fC5b-9. These trends are consistent with clinically observed biomarkers associated with complement-mediated diseases. Furthermore, we introduced therapy states by modeling known inhibitors of the complement system, a compstatin variant (C3 inhibitor) and eculizumab (C5 inhibitor). Compstatin demonstrates strong restorative effects for early-stage biomarkers, such as C3a-desArg, FB, Ba, and Bb, and milder restorative effects for late-stage biomarkers, such as C5a-desArg and fC5b-9, whereas eculizumab has strong restorative effects on late-stage biomarkers, and negligible effects on early-stage biomarkers. These results highlight the need for patient-tailored therapies that target early complement activation at the C3 level, or late-stage propagation of the terminal cascade at the C5 level, depending on the specific FH-mediated disease and the manifestations of a patient’s genetic profile in complement regulatory function.