FIGURE 1 - uploaded by Ishani Dilhara Goonasekara
Content may be subject to copyright.
Maximum parsimony (MP) majority rule consensus tree for the analyzed isolates based on a combined dataset of LSU and ITS sequence data. MP bootstrap support values higher than 50% and Bayesian posterior probabilities (PP) above 95% (MP/PP) are given at the nodes. The tree is rooted to Pseudopestalotiopsis theae (MFLUCC 12−0055). The strain numbers are given after the species names. The new strain is indicated in blue bold and ex-type strains are in black bold.  

Maximum parsimony (MP) majority rule consensus tree for the analyzed isolates based on a combined dataset of LSU and ITS sequence data. MP bootstrap support values higher than 50% and Bayesian posterior probabilities (PP) above 95% (MP/PP) are given at the nodes. The tree is rooted to Pseudopestalotiopsis theae (MFLUCC 12−0055). The strain numbers are given after the species names. The new strain is indicated in blue bold and ex-type strains are in black bold.  

Source publication
Article
Full-text available
A new Seimatosporium species was collected from Quercus robur, in Germany. Morphological and phylogenetic analyses (maximum-parsimony and Bayesian analyses) of combined LSU and ITS datasets confirmed that our collection is distinct from other known species. It is introduced here as a new species, Seimatosporium quercina. The new species is compared...

Contexts in source publication

Context 1
... including gaps. Parsimony analyses indicated that 837 characters were constant, 375 variable characters were parsimony-uninformative and 175 characters were parsimony informative. The new strain, Seimatosporium quercina (MFLU 14-1198), grouped with the ex-epitype S. rosae (MFLUCC 14-0621) forming a distinct clade with low bootstrap support (Fig. 1). The phylogenetic results are further analyzed in the ...
Context 2
... use of conidial morphology has often been considered an important criterion in species identification ( Sutton 1980, Nag Raj 1993 and its value in taxonomy has been discussed in Norphanphoun et al. (2015). In our phylogenetic analysis (Fig. 1) Seimatosporium sensu lato groups into five sub-clades (Clades A-E). Clade A consists of Discostroma fuscellum and the species S. cornii, S. glandigenum and S. lichenicola which have non-appendaged spores with coloured median cells. Clade B consists of Discostroma stonaea and 11 putatively named Seimatosporium species. Seimatosporium ...
Context 3
... four Discostroma strains and nine Seimatosporium strains, including the ex-epitype strain S. rosae. Clade E is represented by one Discostroma sp., Sarcostroma lomatiae, Seimatosporium ficeae, S foliicola and S. rhombisporum. Clade F consists of the Adisciso and Discosia species. It must however, be stressed that the taxon names used in the tree (Fig. 1) are generally not linked to herbarium material, thus the names cannot be confirmed and therefore any conclusions are tentative. The taxa need recollecting and designating as epitypes or reference specimens (sensu Ariyawansa et al. 2014), before any certain conclusions can be made. These clades may require distinct genera, but more ...

Similar publications

Article
Full-text available
Hybothoracaphis gen. nov. with one new species Hybothoracaphis laevigata sp. nov. on Quercus aquifolioides from Ti-bet, China is described and illustrated in the aphid tribe Nipponaphidini. The phylogenetic position of the new genus within Nipponaphidini is investigated using multiple genes, and a key to Hybothoracaphis and allied genera is provide...

Citations

... Among the second group (more frequent in leaves), we identified those with a decreasing seasonal trend, Erwinia (common colonist of leaves [70]), Seimatosporium quercinum (colonist of oak twigs [71]), and Curvibasidium cygneicollum (endophytic phytopathogen or mycoparasite [72]). These taxa probably represent early colonists which are later suppressed due to community succession. ...
Article
Full-text available
Microorganisms are key mediators of interactions between insect herbivores and their host plants. Despite a substantial interest in studying various aspects of these interactions, temporal variations in microbiomes of woody plants and their consumers remain understudied. In this study, we investigated shifts in the microbiomes of leaf-mining larvae (Insecta: Lepidoptera) and their host trees over one growing season in a deciduous temperate forest. We used 16S and ITS2 rRNA gene metabarcoding to profile the bacterial and fungal microbiomes of leaves and larvae. We found pronounced shifts in the leaf and larval microbiota composition and richness as the season progressed, and bacteria and fungi showed consistent patterns. The quantitative similarity between leaf and larval microbiota was very low for bacteria (~9%) and decreased throughout the season, whereas fungal similarity increased and was relatively high (~27%). In both leaves and larvae, seasonality, along with host taxonomy, was the most important factor shaping microbial communities. We identified frequently occurring microbial taxa with significant seasonal trends, including those more prevalent in larvae (Streptococcus, Candida sake, Debaryomyces prosopidis, and Neoascochyta europaea), more prevalent in leaves (Erwinia, Seimatosporium quercinum, Curvibasidium cygneicollum, Curtobacterium, Ceramothyrium carniolicum, and Mycosphaerelloides madeirae), and frequent in both leaves and larvae (bacterial strain P3OB-42, Methylobacterium/Methylorubrum, Bacillus, Acinetobacter, Cutibacterium, and Botrytis cinerea). Our results highlight the importance of considering seasonality when studying the interactions between plants, herbivorous insects, and their respective microbiomes, and illustrate a range of microbial taxa persistent in larvae, regardless of their occurrence in the diet. IMPORTANCE Leaf miners are endophagous insect herbivores that feed on plant tissues and develop and live enclosed between the epidermis layers of a single leaf for their entire life cycle. Such close association is a precondition for the evolution of more intimate host-microbe relationships than those found in free-feeding herbivores. Simultaneous comparison of bacterial and fungal microbiomes of leaves and their tightly linked consumers over time represents an interesting study system that could fundamentally contribute to the ongoing debate on the microbial residence of insect gut. Furthermore, leaf miners are ideal model organisms for interpreting the ecological and evolutionary roles of microbiota in host plant specialization. In this study, the larvae harbored specific microbial communities consisting of core microbiome members. Observed patterns suggest that microbes, especially bacteria, may play more important roles in the caterpillar holobiont than generally presumed.
... Sporocadaceae species play vital roles as saprobes, endophytes, or foliar pathogens (Nag Raj 1993;Tanaka et al. 2011;Maharachchikumbura et al. 2016a;Hyde et al. 2020c). They have cosmopolitan distribution worldwide (Nag Raj 1993;Tanaka et al. 2011;Goonasekara et al. 2016;Perera et al. 2016). Currently, 30 Fig. 80 The best scoring RAxML tree with a final likelihood value of -7118.047524 ...
Article
Full-text available
This article provides descriptions and illustrations of microfungi associated with the leaf litter of Celtis formosana, Ficus ampelas, F. septica, Macaranga tanarius and Morus australis collected from Taiwan. These host species are native to the island and Celtis formosana is an endemic tree species. The study revealed 95 species, consisting of two new families (Cylindrohyalosporaceae and Oblongohyalosporaceae), three new genera (Cylindrohyalospora, Neodictyosporium and Oblongohyalospora), 41 new species and 54 new host records. The newly described species are Acrocalymma ampeli (Acrocalymmaceae), Arthrinium mori (Apiosporaceae), Arxiella celtidis (Muyocopronaceae), Bertiella fici (Melanommataceae), Cercophora fici (Lasiosphaeriaceae), Colletotrichum celtidis, C. fici, C. fici-septicae (Glomerellaceae), Conidiocarpus fici-septicae (Capnodiaceae), Coniella fici (Schizoparmaceae), Cylindrohyalospora fici (Cylindrohyalosporaceae), Diaporthe celtidis, D. fici-septicae (Diaporthaceae), Diaporthosporella macarangae (Diaporthosporellaceae), Diplodia fici-septicae (Botryosphaeriaceae), Discosia celtidis, D. fici (Sporocadaceae), Leptodiscella sexualis (Muyocopronaceae), Leptospora macarangae (Phaeosphaeriaceae), Memnoniella alishanensis, M. celtidis, M. mori (Stachybotryaceae), Micropeltis fici, M. ficina (Micropeltidaceae), Microthyrium fici-septicae (Microthyriaceae), Muyocopron celtidis, M. ficinum, Mycoleptodiscus alishanensis (Muyocopronaceae), Neoanthostomella fici (Xylariales genera incertae sedis), Neodictyosporium macarangae (Sordariales genera incertae sedis), Neofusicoccum moracearum (Botryosphaeriaceae), Neophyllachora fici (Phyllachoraceae), Nigrospora macarangae (Apiosporaceae), Oblongohyalospora macarangae (Oblongohyalosporaceae), Ophioceras ficinum (Ophioceraceae), Parawiesneriomyces chiayiensis (Wiesneriomycetaceae), Periconia alishanica, P. celtidis (Periconiaceae), Pseudocercospora fici-septicae (Mycosphaerellaceae), Pseudoneottiospora cannabacearum (Chaetosphaeriaceae) and Pseudopithomyces mori (Didymosphaeriaceae). The new host records are Alternaria burnsii, A. pseudoeichhorniae (Pleosporaceae), Arthrinium hydei, A. malaysianum, A. paraphaeospermum, A. rasikravindrae, A. sacchari (Apiosporaceae), Bartalinia robillardoides (Sporocadaceae), Beltrania rhombica (Beltraniaceae), Cladosporium tenuissimum (Cladosporiaceae), Coniella quercicola (Schizoparmaceae), Dematiocladium celtidicola (Nectriaceae), Diaporthe limonicola, D. millettiae, D. pseudophoenicicola (Diaporthaceae), Dictyocheirospora garethjonesii (Dictyosporiaceae), Dimorphiseta acuta (Stachybotryaceae), Dinemasporium parastrigosum (Chaetosphaeriaceae), Discosia querci (Sporocadaceae), Fitzroyomyces cyperacearum (Stictidaceae), Gilmaniella bambusae (Ascomycota genera incertae sedis), Hermatomyces biconisporus (Hermatomycetaceae), Lasiodiplodia thailandica, L. theobromae (Botryosphaeriaceae), Memnoniella echinata (Stachybotryaceae), Muyocopron dipterocarpi, M. lithocarpi (Muyocopronaceae), Neopestalotiopsis asiatica, N. phangngaensis (Sporocadaceae), Ophioceras chiangdaoense (Ophioceraceae), Periconia byssoides (Periconiaceae), Pestalotiopsis dracaenea, P. formosana, P. neolitseae, P. papuana, P. parva, P. portugallica, P. trachycarpicola (Sporocadaceae), Phragmocapnias betle (Capnodiaceae), Phyllosticta capitalensis (Phyllostictaceae), Pseudopestalotiopsis camelliae-sinensis (Sporocadaceae), Pseudopithomyces chartarum, P. sacchari (Didymosphaeriaceae), Pseudorobillarda phragmitis (Pseudorobillardaceae), Robillarda roystoneae (Sporocadaceae), Sirastachys castanedae, S. pandanicola (Stachybotryaceae), Spegazzinia musae (Didymosphaeriaceae), Stachybotrys aloeticola, S. microspora (Stachybotryaceae), Strigula multiformis (Strigulaceae), Torula fici (Torulaceae), Wiesneriomyces laurinus (Wiesneriomycetaceae) and Yunnanomyces pandanicola (Sympoventuriaceae). The taxonomic placement of most taxa discussed in this study is based on morphological observation of specimens, coupled with multi-locus phylogenetic analyses of sequence data. In addition, this study provides a host-fungus database for future studies and increases knowledge of fungal diversity, as well as new fungal discoveries from the island.
Article
Full-text available
Rosa (Rosaceae) is an important ornamental and medicinal plant genus worldwide, with several species being cultivated in China. Members of Sporocadaceae (pestalotioid fungi) are globally distributed and include endophytes, saprobes but also plant pathogens, infecting a broad range of host plants on which they can cause important plant diseases. Although several Sporocadaceae species were recorded to inhabit Rosa spp., the taxa occurring on Rosa remain largely unresolved. In this study, a total of 295 diseased samples were collected from branches, fruits, leaves and spines of eight Rosa species (R. chinensis, R. helenae, R. laevigata, R. multiflora, R. omeiensis, R. rugosa, R. spinosissima and R. xanthina) in Gansu, Henan, Hunan, Qinghai, Shaanxi Provinces and the Ningxia Autonomous Region of China. Subsequently 126 strains were obtained and identified based on comparisons of DNA sequence data. Based on these results 15 species residing in six genera of Sporocadaceae were delineated, including four known species (Pestalotiopsis chamaeropis, Pes. rhodomyrtus, Sporocadus sorbi and Spo. trimorphus) and 11 new species described here as Monochaetia rosarum, Neopestalotiopsis concentrica, N. subepidermalis, Pestalotiopsis tumida, Seimatosporium centrale, Seim. gracile, Seim. nonappendiculatum, Seim. parvum, Seiridium rosae, Sporocadus brevis, and Spo. spiniger. This study also represents the first report of Pes. chamaeropis, Pes. rhodomyrtus and Spo. sorbi on Rosa. The overall data revealed that Pestalotiopsis was the most prevalent genus, followed by Seimatosporium, while Pes. chamaeropis and Pes. rhodomyrtus were the two most prevalent species. Analysis of Sporocadaceae abundance on Rosa species and plant organs revealed that spines of R. chinensis had the highest species diversity. Citation: Peng C, Crous PW, Jiang N, et al. 2022. Diversity of Sporocadaceae (pestalotioid fungi) from Rosa in China. Persoonia 49: 201–260. https://doi.org/10.3767/persoonia.2022.49.07.
Article
Full-text available
The Canadian beekeeping industry is spread across the country, with the greatest proportion of managed honey bee colonies occurring in the Prairie Provinces. Nationally, the number of beekeepers has recently been trending upwards. Simultaneously, agronomic and environmental plant pest incidents are increasing due to a number of factors, including the introduction of exotic organisms through international trade, which is a major pathway for the introduction of potentially invasive alien species and quarantine pests. Therefore, regulatory agencies are interested in developing high‐throughput tools to achieve earlier detection of unwanted species in order to expedite application of mitigating measures to limit the impacts of their introduction. This study evaluates the potential of pollen pellet contents collected by honey bees to monitor plant pests using metabarcoding, a high‐throughput sequencing (HTS) approach for monitoring complex environmental samples. The study used the ITS1 intergenic region to target oomycetes and fungi, the ATP9‐NAD9 spacer to specifically target Phytophthora species, and the ITS2 region to target plant species. From the HTS results, a number of plants that were detected corresponded to known hosts of certain pathogens or species closely related to potentially invasive plant species. Genera including phytopathogenic species found in the pollen samples comprised Fusarium sp., Ophiostoma sp., Peronospora sp., Phytophthora sp., and Pythium sp. Correlations, high entropy, and co‐occurrences between certain plants and oomycetes or fungi were observed. The potential for using honey bee‐collected pollen pellets to study phytopathogens in a given environment is demonstrated here, and this concept could represent a promising complementary tool for the surveillance of phytopathogens or unwanted plants with previously described air and insect sampling methods if the protocol was applied with additional genetic markers.
Article
Full-text available
Species of Sporocadaceae are endophytic, plant pathogenic or saprobic, and associated with a wide range of host plants. Recent molecular studies that have attempted to address familial and generic boundaries of fungi belonging to Sporocadaceae were based on a limited number of samples and DNA loci. The taxonomy of this group of fungi is therefore still not fully resolved. The aim of the present study is to provide a natural classification for the Sporocadaceae based on multi-locus phylogenetic analyses, using LSU, ITS, tef-1α tub2 and rpb2 loci, in combination with morphological data. A total of 30 well-supported monophyletic clades in Sporocadaceae are recognised, representing 23 known and seven new genera. Typifications are proposed for the type species of five genera (Diploceras, Discosia, Monochaetia, Sporocadus and Truncatella) to stabilise the application of these names. Furthermore, Neotruncatella and Dyrithiopsis are synonymised under Hymenopleella, and the generic circumscriptions of Diploceras, Disaeta, Hymenopleella, Monochaetia, Morinia, Pseudopestalotiopsis, Sarcostroma, Seimatosporium, Synnemapestaloides and Truncatella are emended. A total of 51 new species, one nomina nova and 15 combinations are introduced.
Article
Full-text available
Seimatosporium species and closely related ‘pestalotioid fungi’ have been isolated from vineyards worldwide, but their ecological status in grapevine wood is unclear. To determine their involvement in the grapevine trunk-disease complex, we tested the pathogenicity of Californian isolates obtained from vines with general symptoms of Botryosphaeria-, Eutypa-, and Phomopsis diebacks. Multi-locus phylogenetic analyses revealed three species: Seimatosporium vitis and two newly described and typified species, Seimatosporium luteosporum sp. nov. and Seimatosporium vitifusiforme sp. nov. Inoculations to woody stems of potted grapevines of both isolates of S. vitis and one isolate of S. vitifusiforme, but not S. luteosporum, were associated with significantly larger lesions than those of non-inoculated controls. Co-inoculations with trunk pathogens (Cryptovalsa ampelina, Diaporthe ambigua, Diatrypella verruciformis, Diplodia seriata, Eutypa lata), co-isolated from the same wood cankers in the field, brought about increased lesion lengths for S. vitifusiforme paired with Dip. seriata, and S. luteosporum paired with Diap. ambigua. In contrast, there were no differences in lesion lengths of S. vitis and Diat. verruciformis or S. vitis and E. lata, inoculated alone or together. Our findings suggest Seimatosporium species are involved in the grapevine trunk-disease complex, and their virulence may depend on or affect that of trunk pathogens.
Article
Full-text available
This is the sixth in a series of papers where we bring collaborating mycologists together to produce a set of notes of several taxa of fungi. In this study we introduce a new family Fuscostagonosporaceae in Dothideomycetes. We also introduce the new ascomycete genera Acericola, Castellaniomyces, Dictyosporina and Longitudinalis and new species Acericola italica, Alternariaster trigonosporus, Amarenomyces dactylidis, Angustimassarina coryli, Astrocystis bambusicola, Castellaniomyces rosae, Chaetothyrina artocarpi, Chlamydotubeufia krabiensis, Colletotrichum lauri, Collodiscula chiangraiensis, Curvularia palmicola, Cytospora mali-sylvestris, Dictyocheirospora cheirospora, Dictyosporina ferruginea, Dothiora coronillae, Dothiora spartii, Dyfrolomyces phetchaburiensis, Epicoccum cedri, Epicoccum pruni, Fasciatispora calami, Fuscostagonospora cytisi, Grandibotrys hyalinus, Hermatomyces nabanheensis, Hongkongmyces thailandica, Hysterium rhizophorae, Jahnula guttulaspora, Kirschsteiniothelia rostrata, Koorchalomella salmonispora, Longitudinalis nabanheensis, Lophium zalerioides, Magnibotryascoma mali, Meliola clerodendri-infortunati, Microthyrium chinense, Neodidymelliopsis moricola, Neophaeocryptopus spartii, Nigrograna thymi, Ophiocordyceps cossidarum, Ophiocordyceps issidarum, Ophiosimulans plantaginis, Otidea pruinosa, Otidea stipitata, Paucispora kunmingense, Phaeoisaria microspora, Pleurothecium floriforme, Poaceascoma halophila, Periconia aquatica, Periconia submersa, Phaeosphaeria acaciae, Phaeopoacea muriformis, Pseudopithomyces kunmingnensis, Ramgea ozimecii, Sardiniella celtidis, Seimatosporium italicum, Setoseptoria scirpi, Torula gaodangensis and Vamsapriya breviconidiophora. We also provide an amended account of Rhytidhysteron to include apothecial ascomata and a J+ hymenium. The type species of Ascotrichella hawksworthii (Xylariales genera incertae sedis), Biciliopsis leptogiicola (Sordariomycetes genera incertae sedis), Brooksia tropicalis (Micropeltidaceae), Bryochiton monascus (Teratosphaeriaceae), Bryomyces scapaniae (Pseudoperisporiaceae), Buelliella minimula (Dothideomycetes genera incertae sedis), Carinispora nypae (Pseudoastrosphaeriellaceae), Cocciscia hammeri (Verrucariaceae), Endoxylina astroidea (Diatrypaceae), Exserohilum turcicum (Pleosporaceae), Immotthia hypoxylon (Roussoellaceae), Licopolia franciscana (Vizellaceae), Murispora rubicunda (Amniculicolaceae) and Doratospora guianensis (synonymized under Rizalia guianensis, Trichosphaeriaceae) were re-examined and descriptions, illustrations and discussion on their familial placement are given based on phylogeny and morphological data. New host records or new country reports are provided for Chlamydotubeufia huaikangplaensis, Colletotrichum fioriniae, Diaporthe subclavata, Diatrypella vulgaris, Immersidiscosia eucalypti, Leptoxyphium glochidion, Stemphylium vesicarium, Tetraploa yakushimensis and Xepicula leucotricha. Diaporthe baccae is synonymized under Diaporthe rhusicola. A reference specimen is provided for Periconia minutissima. Updated phylogenetic trees are provided for most families and genera. We introduce the new basidiomycete species Agaricus purpurlesquameus, Agaricus rufusfibrillosus, Lactifluus holophyllus, Lactifluus luteolamellatus, Lactifluus pseudohygrophoroides, Russula benwooii, Russula hypofragilis, Russula obscurozelleri, Russula parapallens, Russula phoenicea, Russula pseudopelargonia, Russula pseudotsugarum, Russula rhodocephala, Russula salishensis, Steccherinum amapaense, Tephrocybella constrictospora, Tyromyces amazonicus and Tyromyces angulatus and provide updated trees to the genera. We also introduce Mortierella formicae in Mortierellales, Mucoromycota and provide an updated phylogenetic tree.
Article
Full-text available
Knowledge of the relationships and thus the classification of fungi, has developed rapidly with increasingly widespread use of molecular techniques, over the past 10–15 years, and continues to accelerate. Several genera have been found to be polyphyletic, and their generic concepts have subsequently been emended. New names have thus been introduced for species which are phylogenetically distinct from the type species of particular genera. The ending of the separate naming of morphs of the same species in 2011, has also caused changes in fungal generic names. In order to facilitate access to all important changes, it was desirable to compile these in a single document. The present article provides a list of generic names of Ascomycota (approximately 6500 accepted names published to the end of 2016), including those which are lichen-forming. Notes and summaries of the changes since the last edition of ‘Ainsworth & Bisby’s Dictionary of the Fungi’ in 2008 are provided. The notes include the number of accepted species, classification, type species (with location of the type material), culture availability, life-styles, distribution, and selected publications that have appeared since 2008. This work is intended to provide the foundation for updating the ascomycete component of the “Without prejudice list of generic names of Fungi” published in 2013, which will be developed into a list of protected generic names. This will be subjected to the XIXth International Botanical Congress in Shenzhen in July 2017 agreeing to a modification in the rules relating to protected lists, and scrutiny by procedures determined by the Nomenclature Committee for Fungi (NCF). The previously invalidly published generic names Barriopsis, Collophora (as Collophorina), Cryomyces, Dematiopleospora, Heterospora (as Heterosporicola), Lithophila, Palmomyces (as Palmaria) and Saxomyces are validated, as are two previously invalid family names, Bartaliniaceae and Wiesneriomycetaceae. Four species of Lalaria, which were invalidly published are transferred to Taphrina and validated as new combinations. Catenomycopsis Tibell & Constant. is reduced under Chaenothecopsis Vain., while Dichomera Cooke is reduced under Botryosphaeria Ces. & De Not. (Art. 59).
Article
Full-text available
Seimatosporium vitis was recently described based on the collection of its coelomycetous asexual morph on Vitis vinifera in Italy. In this study Seimatosporium vitis is introduced for the first time from grapevine in Iran. The sexual morph is illustrated and a full description is provided. The connection between two different morphs was proved in culture and based on ITS sequence data.