Figure - uploaded by Klytaimnistra Katsara
Content may be subject to copyright.
Major Raman peaks found in PCA between BR1 and BR3, 4. In red color and with an asterisk superscript the temperature dependent Raman peaks are presented.

Major Raman peaks found in PCA between BR1 and BR3, 4. In red color and with an asterisk superscript the temperature dependent Raman peaks are presented.

Source publication
Article
Full-text available
Raman spectroscopy is a well-defined spectroscopic technique sensitive to the molecular vibrations of materials, since it provides fingerprint-like information regarding the molecular structure of the analyzed samples. It has been extensively used for non-destructive and label-free cell characterization, particularly in the qualitative and quantita...

Citations

... Raman mapping and optical and fluorescence microscopy were used for PET MP detection. Raman mapping, particularly Raman micro-spectroscopy, has no sample management costs since it is a label-free method, where pretreatment of sample preparation is not obligatory [16,17]. This is the reason why Raman mapping is the first proposed method for multiple sample measurements [18][19][20]. ...
Article
Full-text available
Honey, renowned for its nutritional and therapeutic properties, has recently come under scrutiny due to its contamination by microplastics, in multiple ways. Bees’ exposure to plastic pollution impacts the whole hive’s ecosystem, and plastic tends to accumulate in hive products. Plastic packaging as polyethylene terephthalate (PET) is used to store honey in small flexible packages, which also increases the risk of microplastic migration. This study aims to establish three practical detection methods for PET microplastics and nanoplastics in honey, using readily available laboratory equipment without the need for chemical digestion or costly pretreatment protocols, in a laboratory-based simulation. The first method utilizes Raman micro-spectroscopy, offering high-resolution identification of PET microplastics on cellulose acetate filters with Raman mapping, eliminating the need for organic solvents or dyes. The second method employs optical microscopic observation under fluorescence with the aid of 4-dimethylamino-4′-nitrostilbene dye and ultraviolet radiation to enhance microplastic visibility, making it suitable for laboratories with standard optical microscopes. To isolate MPs from the solid honey particles, a density separator has been introduced using pentane. Lastly, the third method employs the use of electrospray ionization mass spectrometry for the detection of nanoplastics (<200 nm) in honey samples, through the examination of the different extraction phases of density separation. All the aforementioned methods contribute to efficient microplastic detection in honey, ensuring its quality and safe consumption.
... For example, the comparison between non-Hodgkin lymphoma (NHL) JMP-1/MCL and Hodgkin lymphoma MDA-V cell lines allowed for identification under different temperature as the measurements were taken in the range between 15 and 37 • C. They demonstrated that temperature influences specific Raman peaks in the nuclei of the cell line, although it does not contribute to the differentiation of the cell lines [65]. It proves that RS is reliable method despite a potential physicochemical changes (temperature, humidity) that could interfere with the analysis. ...
Article
Full-text available
Raman spectroscopy is a molecular spectroscopic technique able to provide detailed information about the chemical structure, phase, crystallinity, and molecular interactions of virtually any analyzed sample. Although its medical applications have been studied for several decades, only recent advances in microscopy, lasers, detectors, and better understanding of the principles of the Raman effect have successfully expanded its applicability to clinical settings. The promise of a rapid, label-free diagnostic method able to evaluate the metabolic status of a cell in vivo makes Raman spectroscopy particularly attractive for hematology and oncology. Here, we review widely studied hematological applications of Raman spectroscopy such as leukocyte activation status, evaluation of treatment response, and differentiation between cancer and non-malignant cells, as well as its use in still unexplored areas in hematology. We also discuss limitations and challenges faced by Raman spectroscopy-based diagnostics as well as recent advances and modifications of the method aimed to increase its applicability to clinical hematooncology.
... Regarding drug payloads, their Raman spectra in both forms were very similar. Raman spectra of trametinib, a pyridopyrimidine, showed peaks related to C-C aromatic ring stretching (1002 cm −1 ), C=C in benzenoid ring (1499 cm −1 ) [35] and amide III (1208 cm −1 ). Meanwhile, for pimasertib the most representative peaks were at 1226 cm −1 for amide III and at 1422 cm −1 for NH binding. ...
Article
Full-text available
The characterization of nanoparticle-based drug-delivery systems represents a crucial step in achieving a comprehensive overview of their physical, chemical, and biological features and evaluating their efficacy and safety in biological systems. We propose Raman Spectroscopy (RS) for the characterization of liposomes (LPs) to be tested for the control of neuroinflammation and microglial dysfunctions in Glioblastoma multiforme and Alzheimer’s disease. Drug-loaded LPs were functionalized to cross the blood–brain barrier and to guarantee localized and controlled drug release. The Raman spectra of each LP component were used to evaluate their contribution in the LP Raman fingerprint. Raman data analysis made it possible to statistically discriminate LPs with different functionalization patterns, showing that each molecular component has an influence in the Raman spectrum of the final LP formulation. Moreover, CLS analysis on Raman data revealed a good level of synthetic reproducibility of the formulations and confirmed their stability within one month from their synthesis, demonstrating the ability of the technique to evaluate the efficacy of LP synthesis using small amount of sample. RS represents a valuable tool for a fast, sensitive and label free biochemical characterization of LPs that could be used for quality control of nanoparticle-based therapeutics.
... In 2022, Katsara et al. suggested a rapid RS method for characterization and differentiation. This method provides a nondestructive strategy for early and accurate lymphoma classification (163). SERS can be a non-destructive diagnosis and staging diffuse large B-cell lymphoma (DLBCL) strategy on serum. ...
Article
Full-text available
Although the survival rate of pediatric cancer has significantly improved, it is still an important cause of death among children. New technologies have been developed to improve the diagnosis, treatment, and prognosis of pediatric cancers. Raman spectroscopy (RS) is a non-destructive analytical technique that uses different frequencies of scattering light to characterize biological specimens. It can provide information on biological components, activities, and molecular structures. This review summarizes studies on the potential of RS in pediatric cancers. Currently, studies on the application of RS in pediatric cancers mainly focus on early diagnosis, prognosis prediction, and treatment improvement. The results of these studies showed high accuracy and specificity. In addition, the combination of RS and deep learning is discussed as a future application of RS in pediatric cancer. Studies applying RS in pediatric cancer illustrated good prospects. This review collected and analyzed the potential clinical applications of RS in pediatric cancers.
Article
Full-text available
Traumatic brain injury (TBI) affects millions of people of all ages around the globe. TBI is notoriously hard to diagnose at the point of care, resulting in incorrect patient management, avoidable death and disability, long-term neurodegenerative complications, and increased costs. It is vital to develop timely, alternative diagnostics for TBI to assist triage and clinical decision-making, complementary to current techniques such as neuroimaging and cognitive assessment. These could deliver rapid, quantitative TBI detection, by obtaining information on biochemical changes from patient’s biofluids. If available, this would reduce mis-triage, save healthcare providers costs (both over- and under-triage are expensive) and improve outcomes by guiding early management. Herein, we utilize Raman spectroscopy-based detection to profile a panel of 18 raw (human, animal, and synthetically derived) TBI-indicative biomarkers (N-acetyl-aspartic acid (NAA), Ganglioside, Glutathione (GSH), Neuron Specific Enolase (NSE), Glial Fibrillary Acidic Protein (GFAP), Ubiquitin C-terminal Hydrolase L1 (UCHL1), Cholesterol, D-Serine, Sphingomyelin, Sulfatides, Cardiolipin, Interleukin-6 (IL-6), S100B, Galactocerebroside, Beta-D-(+)-Glucose, Myo-Inositol, Interleukin-18 (IL-18), Neurofilament Light Chain (NFL)) and their aqueous solution. The subsequently derived unique spectral reference library, exploiting four excitation lasers of 514, 633, 785, and 830 nm, will aid the development of rapid, non-destructive, and label-free spectroscopy-based neuro-diagnostic technologies. These biomolecules, released during cellular damage, provide additional means of diagnosing TBI and assessing the severity of injury. The spectroscopic temporal profiles of the studied biofluid neuro-markers are classed according to their acute, sub-acute, and chronic temporal injury phases and we have further generated detailed peak assignment tables for each brain-specific biomolecule within each injury phase. The intensity ratios of significant peaks, yielding the combined unique spectroscopic barcode for each brain-injury marker, are compared to assess variance between lasers, with the smallest variance found for UCHL1 (σ2 = 0.000164) and the highest for sulfatide (σ2 = 0.158). Overall, this work paves the way for defining and setting the most appropriate diagnostic time window for detection following brain injury. Further rapid and specific detection of these biomarkers, from easily accessible biofluids, would not only enable the triage of TBI, predict outcomes, indicate the progress of recovery, and save healthcare providers costs, but also cement the potential of Raman-based spectroscopy as a powerful tool for neurodiagnostics.