Main enzymes involved in DNA methylation.

Main enzymes involved in DNA methylation.

Source publication
Article
Full-text available
Chronic Myeloid Leukemia (CML) is a model to investigate the impact of tumor intra-clonal heterogeneity in personalized medicine. Indeed, tyrosine kinase inhibitors (TKIs) target the BCR-ABL fusion protein, which is considered the major CML driver. TKI use has highlighted the existence of intra-clonal heterogeneity, as indicated by the persistence...

Context in source publication

Context 1
... methylation is often associated with transcription repression and long-term silencing [17]. DNA methylation is controlled by different enzymes (Figure 1). DNA methyltransferases (DNMTs) [18] catalyze the addition of the methyl group and include three main enzymes: DNMT1, DNMT3A and DNMT3B. ...

Similar publications

Article
Full-text available
Rationale: Persistent leukocytosis with megalosplenia is a common manifestation among patients with myeloproliferative neoplasm (MPN), especially for chronic myeloid leukemia (CML) patients. Here, we report a rare case of myeloid neoplasm with BCR-PDGFRA rearrangement characterized by obvious elevation of leukocyte count and megalosplenia. Patien...

Citations

... Finally, some preliminary results suggest the existence of age-related DNA methylation abnormalities common to all patients, regardless of age. This could be linked to the emergence and amplification of the CML clone and possibly to an individual predisposition [14]. Lastly, some tyrosine kinase inhibitors (TKI) as nilotinib and ponatinib can induce side effects considered as aging-related diseases, for example cardio-vascular toxicity. ...
Article
Full-text available
Background In the era of targeted therapies, the influence of aging on cancer management varies from one patient to another. Assessing individual frailty using geriatric tools has its limitations, and is not appropriate for all patients especially the youngest one. Thus, assessing the complementary value of a potential biomarker of individual aging is a promising field of investigation. The chronic myeloid leukemia model allows us to address this question with obvious advantages: longest experience in the use of tyrosine kinase inhibitors, standardization of therapeutic management and response with minimal residual disease and no effect on age-related diseases. Therefore, the aim of the BIO-TIMER study is to assess the biological age of chronic myeloid leukemia or non-malignant cells in patients treated with tyrosine kinase inhibitors and to determine its relevance, in association or not with individual frailty to optimize the personalised management of each patient. Methods The BIO-TIMER study is a multi-center, prospective, longitudinal study aiming to evaluate the value of combining biological age determination by DNA methylation profile with individual frailty assessment to personalize the management of chronic myeloid leukemia patients treated with tyrosine kinase inhibitors. Blood samples will be collected at diagnosis, 3 months and 12 months after treatment initiation. Individual frailty and quality of life will be assess at diagnosis, 6 months after treatment initiation, and then annually for 3 years. Tolerance to tyrosine kinase inhibitors will also be assessed during the 3-year follow-up. The study plans to recruit 321 patients and recruitment started in November 2023. Discussion The assessment of individual frailty should make it possible to personalize the treatment and care of patients. The BIO-TIMER study will provide new data on the role of aging in the management of chronic myeloid leukemia patients treated with tyrosine kinase inhibitors, which could influence clinical decision-making. Trial registration ClinicalTrials.gov, ID NCT06130787; registered on November 14, 2023.
... Multiple post-translational modifications have been identified for BCR-ABL1 and its downstream signaling proteins, which play roles in the progression of CML, including phosphorylation, acetylation, methylation and ubiquitination [5][6][7][8][9][10][11]. The ubiquitinproteasome system is an important regulatory pathway for the intracellular protein degradation. ...
Article
Full-text available
Purpose: Chronic myeloid leukemia stem cells (CML-LSCs) are posited as the primary instigators of resistance to tyrosine kinase inhibitors (TKIs) and recurrence of CML. Ubiquitination, a post-translational modification, has been implicated in the worsening process of CML. A more detailed understanding of their crosstalk needs further investigation. Our research aims to explore the potential ubiquitination-related genes in CML-LSC using bioinformatics analysis that might be the target for the eradication of LSCs. Methods: The ubiquitination modification-related differentially expressed genes (UUC-DEGs) between normal hematopoietic stem cells (HSCs) and LSCs were obtained from GSE47927 and iUUCD database. Subsequently, the hub UUC-DEGs were identified through protein-protein interaction (PPI) network analysis utilizing the STRING database and the MCODE plug-in within the Cytoscape platform. The upstream regulation network of the hub UUC-DEGs was studied by hTFtarget, PROMO, miRDB and miRWalk databases respectively. Then the correlation between the hub UUC-DEGs and the immune cells was analyzed by the CIBERSORT algorithm and "ggcorrplot" package. Finally, we validated the function of hub UUC-DEGs in CML animal models, CML cell lines and CD34⁺ cells of the GSE24739 dataset. Results: There is a strong association between the 4 hub UUC genes (AURKA, Fancd2, Cdc20 and Uhrf1) of LSCs and the infiltration of CD4⁺/CD8⁺ T cells, NK cells and monocytes. 8 TFs and 23 miRNAs potentially targeted these 4 hub genes were constructed. Among these hub genes, Fancd2, Cdc20 and Uhrf1 were found to be highly expressed in CML-LSC, which knocking down resulted in significant inhibition of CML cell proliferation. Conclusions: From the perspective of bioinformatics analysis, UHRF1 and CDC20 were identified as the novel key ubiquitination-related genes in CML-LSCs and the pathogenesis of CML.
... Chronic Myeloid Leukemia (CML) is a unique model for the evolution of cancer and is classified as a triphasic myeloproliferative neoplasm based on clinical and pathological characteristics. Premalignant leukemia stem cells (LSCs) are, in fact, generated in the bone marrow nich by unknown mutagenesis processes 1,2 . In this step, the disease may be undetectable for a decade or more. ...
Article
Full-text available
Chronic myeloid leukemia (CML) is a model of leukemogenesis in which the exact molecular mechanisms underlying blast crisis still remained unexplored. The current study identified multiple common and rare important findings in myeloid blast crisis CML (MBC-CML) using integrated genomic sequencing, covering all classes of genes implicated in the leukemogenesis model. Integrated genomic sequencing via Whole Exome Sequencing (WES), Chromosome-seq and RNA-sequencing were conducted on the peripheral blood samples of three CML patients in the myeloid blast crisis. An in-house filtering pipeline was applied to assess important variants in cancer-related genes. Standard variant interpretation guidelines were used for the interpretation of potentially important findings (PIFs) and potentially actionable findings (PAFs). Single nucleotide variation (SNV) and small InDel analysis by WES detected sixteen PIFs affecting all five known classes of leukemogenic genes in myeloid malignancies including signaling pathway components (ABL1, PIK3CB, PTPN11), transcription factors (GATA2, PHF6, IKZF1, WT1), epigenetic regulators (ASXL1), tumor suppressor and DNA repair genes (BRCA2, ATM, CHEK2) and components of spliceosome (PRPF8). These variants affect genes involved in leukemia stem cell proliferation, self-renewal, and differentiation. Both patients No.1 and No.2 had actionable known missense variants on ABL1 (p.Y272H, p.F359V) and frameshift variants on ASXL1 (p.A627Gfs*8, p.G646Wfs*12). The GATA2-L359S in patient No.1, PTPN11-G503V and IKZF1-R208Q variants in the patient No.3 were also PAFs. RNA-sequencing was used to confirm all of the identified variants. In the patient No. 3, chromosome sequencing revealed multiple pathogenic deletions in the short and long arms of chromosome 7, affecting at least three critical leukemogenic genes (IKZF1, EZH2, and CUX1). The large deletion discovered on the short arm of chromosome 17 in patient No. 2 resulted in the deletion of TP53 gene as well. Integrated genomic sequencing combined with RNA-sequencing can successfully discover and confirm a wide range of variants, from SNVs to CNVs. This strategy may be an effective method for identifying actionable findings and understanding the pathophysiological mechanisms underlying MBC-CML, as well as providing further insights into the genetic basis of MBC-CML and its management in the future.
... The ABL1 gene has two active promoters, that is, a and b. Studies have reported a link between the disease stage and methylation of the ABL1 promoter in leukemia patients (Lebecque et al., 2021). ...
Article
Full-text available
Exposure to organochlorines is associated with epigenetic changes, including methylation change in the promoter of tumor suppressor genes, thereby leading to cancer induction. The aim of this study was to investigate the relationship between organochlorine pesticides (OCPs) and ABL1 promoter methylation in child patients with acute lymphoblastic leukemia (ALL) and the control group. The methylation rate of the ABL1 promoter was evaluated using the methylation-specific polymerase chain reaction method, and the level of OCPs in patients with ALL and healthy children was measured using gas chromatography. ABL1 promoter hypermethylation was observed in 64% of ALL patients and 28.5% of children in the control group. The level of OCPs in children with methylated ABL1 promoters was significantly higher than that in children with nonmethylated ABL1 promoters (p < 0.05). Our findings suggest that OCPs, especially alpha-hexachlorocyclohexane, beta-hexachlorocyclohexane, gamma-hexachlorocyclohexane, 2,4 dichlorodiphenyldichloroethylene, and 4,4 dichlorodiphenyltrichloroethane may induce methylation at the ABL1 promoter level, thereby preventing the normal expression of the ABL1 gene. As a result, the reduced expression of ABL1 (a tumor suppressor) gene due to the hypermethylation of its promoter leads to the disruption of normal biological processes, thus making cells vulnerable to oncogenic factors.
... In drug-resistant cancers, a variable extent of dysregulated methylation dependent on the drug and tumor was described, for instance 65% hypermethylated genes in patients with colorectal cancer undergoing 5-fluorouracil treatment or 44% hypermethylated genes in cisplatin-resistant lung adenocarcinoma A549 cells (41)(42)(43). For CML, it was revealed that DNA methylation increases moderately in blast crisis compared with chronic phase (44). In addition, it was demonstrated that the BCR-ABL1 fusion protein is able to alter DNA methylation, which can be reversed by imatinib or 5-azacytidine (45). ...
Article
Full-text available
Although chronic myeloid leukemia (CML) can be effectively treated using BCR‑ABL1 kinase inhibitors, resistance due to kinase alterations or to BCR‑ABL1 independent mechanisms remain a therapeutic challenge. For the latter, the underlying mechanisms are widely discussed; for instance, gene expression changes, epigenetic factors and alternative signaling pathway activation. In the present study, in vitro‑CML cell models of resistance against the tyrosine kinase inhibitors (TKIs) imatinib (0.5 and 2 µM) and nilotinib (0.1 µM) with biological replicates were generated to identify novel mechanisms of resistance. Subsequently, genome‑wide mRNA expression and DNA methylation were analyzed. While mRNA expression patterns differed largely between biological replicates, there was an overlap of 71 genes differentially expressed between cells resistant against imatinib or nilotinib. Moreover, all TKI resistant cell lines demonstrated a slight hypermethylation compared with native cells. In a combined analysis of 151 genes differentially expressed in the biological replicates of imatinib resistance, cell adhesion signaling, in particular the cellular matrix protein fibronectin 1 (FN1), was significantly dysregulated. This gene was also downregulated in nilotinib resistance. Further analyses showed significant FN1‑downregulation in imatinib resistance on mRNA (P<0.001) and protein level (P<0.001). SiRNA‑mediated FN1‑knockdown in native cells reduced cell adhesion (P=0.02), decreased imatinib susceptibility visible by higher Ki‑67 expression (1.5‑fold, P=0.04) and increased cell number (1.5‑fold, P=0.03). Vice versa, recovery of FN1‑expression in imatinib resistant cells was sufficient to partially restore the response to imatinib. Overall, these results suggested a role of cell adhesion signaling and fibronectin 1 in TKI resistant CML and a potential target for novel strategies in treatment of resistant CML.
... Driven by constitutively active tyrosine kinase secondary to the fusion gene product, CML is characterized by the accumulation of immature cells in the bone marrow, blood, and spleen, due to the proliferative advantage from the oncogene addiction and differential block [3]. However, CML has been found to have a more heterogeneous genetic signature than previously thought, which involves changes other than the BCR::ABL fusion [4]. Though the Philadelphia chromosome and the ensuing oncogenic overdrive dictates the pathophysiology of CML, there is progressive genetic instability in patients who have transformation of CML to the advanced phases: accelerated phase (AP) and blast phase (BP) [5]. ...
Article
Full-text available
Simple Summary Chronic myeloid leukemia is a disease diagnosed by the presence of the Philadelphia chromosome, which leads to the BCR::ABL fusion oncoprotein and overactive tyrosine kinase activity. Multiple other genetic aberrations and chromosomal changes make the disease very heterogeneous, and these changes increase as the disease becomes more aggressive. Understanding the cause and effects of chromosomal instability in CML might help to improve treatment options and monitoring of patients with advanced phases of CML. Abstract The most recent two decades have seen tremendous progress in the understanding and treatment of chronic myeloid leukemia, a disease defined by the characteristic Philadelphia chromosome and the ensuing BCR::ABL fusion protein. However, the biology of the disease extends beyond the Philadelphia chromosome into a nebulous arena of chromosomal and genetic instability, which makes it a genetically heterogeneous disease. The BCR::ABL oncoprotein creates a fertile backdrop for oxidative damage to the DNA, along with impairment of genetic surveillance and the favoring of imprecise error-prone DNA repair pathways. These factors lead to growing chromosomal instability, manifested as additional chromosomal abnormalities along with other genetic aberrations. This worsens with disease progression to accelerated and blast phase, and modulates responses to tyrosine kinase inhibitors. Treatment options that target the genetic aberrations that mitigate chromosome instability might be a potential area for research in patients with advanced phase CML.
... However, a minority of subclones with genetic aberration and quiescent leukemic stem cells are not eliminated by TKI. 27,28 Molecular resistance is measured by quantitative real-time polymerase chain reaction (qRT-PCR) of BCR-ABL1 and cytogenetic resistance (Ph+ persistence). These procedures are considered the main standard for monitoring the patient response to therapy, predicting relapse, and guide treatment decisions. ...
Article
Full-text available
Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm generated by reciprocal chromosomal translocation, t (9; 22) (q34; q11) in the transformed hematopoietic stem cell. Tyrosine kinase inhibitors (TKIs) target the mature proliferating BCR-ABL cells, the major CML driver, and increase overall and disease-free survival. However, mutant clones, pre-existing or due to therapy, develop resistance against TKIs. BCR-ABL1 oncoprotein activates various molecular pathways including the RAS/RAF/MEK/ERK pathway, JAK2/STAT pathway, and PI3K/AKT/mTOR pathway. Stimulation of these pathways in TKI resistant CML patients, make them a new target. Moreover, a small proportion of CML cells, leukemic stem cells (LSCs), persist during the TKI therapy and sustain the disease in the patient. Engraftment of LSCs in the bone marrow niche and dysregulation of miRNA participate greatly in the TKI resistance. Current efforts are needed for determining the reason behind TKI resistance, identification, and elimination of CML LSC might be of great need for cancer cure.
Article
OBJECTIVE: Chronic myeloid leukemia (CML) is a hematological disease which is known by the presence of Philadelphia chromosome (Ph+). BCR-ABL protein is expressed by Ph+ chromosome, represents constant increased tyrosine kinase activity. Imatinib (IMA) is a tyrosine kinase inhibitor (TKI) which is utilized as a first line treatment in CML. Emergence of IMA resistance at some point of therapy leads to treatment failure. DNA methylation is considered to be the most stable epigenetic change and several studies have shown that epigenetic changes may play a role in drug resistance. We investigated the global methylation profile of IMA-sensitive K562S, IMA-resistant K562R and IMA-resistant and adherent K562R (K562R-adh) cells to determine whether epigenetic reprogramming is involved in the resistance to IMA and the change in phenotype due to this resistance. MATERIAL AND METHODS: In this study, morphologically distinct, IMA-sensitive K562S and 5µM IMA-resistant K562R and K562R-adh in-vitro CML cell models were used to analyze the global DNA methylation profile. After DNA was isolated from the cells, global 5mC DNA methylation profiles were investigated by ELISA using equal amounts of DNA. RESULTS: Compared to K562S, the global methylation of K562R showed an increase in DNA methylation profile, but this increase in methylation was not statistically significant. Whereas, a slight hypermethylation was observed in the DNA of the K562R-adh vs K562S and K562R-adh vs K562R which is statistically significant. We observed slight hypermethylation in IMA-resistant cells lines versus to the IMA-sensitive cell line. CONCLUSION: Our observed differences in 5methyl-Cytosine on CpG islands (5mC) in K562S versus K562R and K562R-adh cell lines suggest that the DNA methylation alteration in resistant cells may partly contributed in phenotype switching.
Article
DNA methylation, a crucial biochemical process within the human body, fundamentally alters gene expression without modifying the DNA sequence, resulting in stable changes. The changes in DNA methylation are closely related to numerous biological processes including cellular proliferation and differentiation, embryonic development, and the occurrence of immune diseases and tumor. Specifically, abnormal DNA methylation plays a crucial role in the formation, progression, and prognosis of chronic myeloid leukemia (CML). Moreover, DNA methylation offers substantial potential for diagnosing and treating CML. Accordingly, understanding the precise mechanism of DNA methylation, particularly abnormal changes in the methylation of specific genes in CML, can potentially promote the development of novel targeted therapeutic strategies. Such strategies could transform into clinical practice, effectively aiding diagnosis and treatment of CML patients.
Article
“Heterogeneity” in tumor mass has immense importance in cancer progression and therapy. The impact of tumor heterogeneity is an emerging field and not yet fully explored. Tumor heterogeneity is mainly considered as intra-tumor heterogeneity and inter-tumor heterogeneity based on their origin. Intra-tumor heterogeneity refers to the discrepancy within the same cancer mass while inter-tumor heterogeneity refers to the discrepancy between different patients having the same tumor type. Both of these heterogeneity types lead to variation in the histopathological as well as clinical properties of the cancer mass which drives disease resistance towards therapeutic approaches. Cancer stem cells (CSCs) act as pinnacle progenitors for heterogeneity development along with various other genetic and epigenetic parameters that are regulating this process. In recent times epigenetic factors are one of the most studied parameters that drive oxidative stress pathways essential during cancer progression. These epigenetic changes are modulated by various epidrugs and have an impact on tumor heterogeneity. The present review summarizes various aspects of epigenetic regulation in the tumor microenvironment, oxidative stress, and progression towards tumor heterogeneity that creates complications during cancer treatment. This review also explores the possible role of epidrugs in regulating tumor heterogeneity and personalized therapy against drug resistance.