Figure 5 - uploaded by Jung Hyun Jo
Content may be subject to copyright.
Interface diagram of DAS. Figure 6. Interface diagram of ROS.

Interface diagram of DAS. Figure 6. Interface diagram of ROS.

Source publication
Article
Full-text available
Korea Astronomy and Space Science Institute (KASI) has been developing one mobile and one stationary SLR system since 2008 named as ARGO-M and ARGO-F, respectively. KASI finished the step of deriving the system requirements of ARGO. The requirements include definitions and scopes of various software and hardware components which are necessary for d...

Context in source publication

Context 1
... the case of LAGEOS satellite, target precision of normal point is defined less than 5 mm RMS in the system level requirement (Lim & Lee 2009). Figure 5 represents DAS collect the meteorological data from WMS and system status data from several systems. DAS will have a redundant command line for closing the dome in emergency due to bad weather. ...

Similar publications

Article
Full-text available
The first Korean satellite laser ranging (SLR) system, Daedeok SLR station (DAEK station) was developed by Korea Astronomy and Space Science Institute (KASI) in 2012, whose main objectives are space geodesy researches. In consequence, Korea became the 25th country that operates SLR system supplementing the international laser tracking network. The...

Citations

... Fig. 2 shows the subsystems constituting the ARGO-M. Among these, the Korea Astronomy and Space Science Institute took charge of the development of the ARGO-M operation system (AOS) (Seo et al., 2009. The scope of work included the data generation necessary for overall system operation, the operation scenario configuration, the required time and frequency system configuration, the communication interface design, and the checking of the operation result. ...
... 4 shows the generation and flow of the data related with the satellite position tracking. As shown in Fig. 4, the operation computer of the AOS consists of the interface control system (ICS), the observation control system (OCS), and the data analysis system (DAS) (Seo et al., 2009. To obtain "Prediction file," CPF data are converted to the data of the azimuth-altitude coordinate system centered on the user, and then the sparse data with different periods for each satellite are converted to data with denser periods, to enable real-time calculation. ...
Article
For the development of a telescope that is capable of precisely tracking satellites and high-speed operation such as satellite laser ranging, a special method of telescope operation is required. This study aims to propose a new telescope operation method and system configuration for the independent development of a mount and an operation system which includes the host computer. Considering that the tracking of a satellite is performed in real time, communication and synchronization between the two independent subsystems are important. Therefore, this study applied the concept of time synchronization, which is used in various fields of industry, to the communication between the command computer and the mount. In this case, communication delays do not need to be considered in general, and it is possible to cope with data loss. Above all, when the mount is replaced in the future, only the general communication interface needs to be modified, and thus, it is not limited by replacement in terms of the overall system management. The performance of the telescope operation method developed in this study was verified by applying the method to the first mobile SLR system in Korea. This study is significant in that it proposed a new operation method and system configuration, to which the concept of time synchronization was applied, for the observation system that requires an optical telescope.
... For the normal operation of entire system, various subsystems and operation equipment should be accompanied in addition to AOS (ARGO-M Operation System) (Seo et al. 2009(Seo et al. , 2010 which includes operation software. AOS plays a main role for most of communications among these systems. ...
Article
Full-text available
The application of software engineering is not common in the development of astronomical observation system. While there were component-wise developments in the past, large-scale comprehensive system developments are more common in these days. In this study, current methodologies of development are reviewed to select a proper one for the development of astronomical observation system and the result of the application is presented. As the subject of this study, a project of operation software development for an astronomical observation system which runs on the ground is selected. And the output management technique based on Component Based Development which is one of the relatively recent methodologies has been applied. Since the nature of the system requires lots of arithmetic algorithms and it has great impact on the overall performance of the entire system, a prototype model is developed to verify major functions and performance. Consequently, it was possible to verify the compliance with the product requirements through the requirement tracing table and also it was possible to keep to the schedule. Besides, it was suggested that a few improvements could be possible based on the experience of the application of conventional output management technique. This study is the first application of the software development methodology in the domestic astronomical observation system area. The process and results of this study would contribute to the investigation for a more appropriate methodology in the area of similar system development.
Article
Korea Astronomy and Space Science Institute(KASI) has been developing one mobile SLR system since 2008 named as ARGO-M. Control logic in real-time laser ranging and data processing for normal point from the ranging data are key elements in the operation system of ARGO-M. KASI operation system team performed software logic analysis and related operations for SLR observation with help of Graz SLR station in Austria. This paper describes the algorithm required for SLR operation based on the method in Graz station. We figured out the essential logic for SLR operation and the remedy for the observation quality enhancement through this study.
Article
Full-text available
Korea Astronomy and Space Science Institute has been developing one mobile satellite laser ranging system named as accurate ranging system for geodetic observation-mobile (ARGO-M). Preliminary design of ARGO-M operation system (AOS) which is one of the ARGO-M subsystems was completed in 2009. Preliminary design results are applied to the following development phase by performing detailed design with analysis of pre-defined requirements and analysis of the derived specifications. This paper addresses the preliminary design of the whole AOS. The design results in operation and control part which is a key part in the operation system are described in detail. Analysis results of the interface between operation-supporting hardware and the control computer are summarized, which is necessary in defining the requirements for the operation-supporting hardware. Results of this study are expected to be used in the critical design phase to finalize the design process.
Article
In this study, we have proposed and implemented a design for the tracking mount and controller of the ARGO-M (Accurate Ranging system for Geodetic Observation – Mobile) which is a mobile satellite laser ranging (SLR) system developed by the Korea Astronomy and Space Science Institute (KASI) and Korea Institute of Machinery and Materials (KIMM). The tracking mount comprises a few core components such as bearings, driving motors and encoders. These components were selected as per the technical specifications for the tracking mount of the ARGO-M. A three-dimensional model of the tracking mount was designed. The frequency analysis of the model predicted that the first natural frequency of the designed tracking mount was high enough. The tracking controller is simulated using MATLAB/xPC Target to achieve the required pointing and tracking accuracy. In order to evaluate the system repeatability and tracking accuracy of the tracking mount, a prototype of the ARGO-M was fabricated, and repeatability tests were carried out using a laser interferometer. Tracking tests were conducted using the trajectories of low earth orbit (LEO) and high earth orbit (HEO) satellites. Based on the test results, it was confirmed that the prototype of the tracking mount and controller of the ARGO-M could achieve the required repeatability along with a tracking accuracy of less than 1arcsec.