Figure - available from: Pharmaceutical Biology
This content is subject to copyright. Terms and conditions apply.
Images of some representative samples of Kniphofia species.

Images of some representative samples of Kniphofia species.

Source publication
Article
Full-text available
Context Kniphofia (Asphodelaceae) is found mainly in South Africa and Tropical Africa. Malaria, hepatitis B, blood purifier, cancer, eczema, and female infertility have all been traditionally treated using this genus. Objective The current review provides a complete and up-to-date compilation of documented traditional medicinal uses, phytochemical...

Citations

... Most developing countries rely on traditional medicinal plants for their healthcare. Terefore, it should come as no surprise that some of these plants contain chemical compounds that have therapeutic potential and could be utilized to treat serious diseases like malaria, cancer, and pathogenic microbes [12]. According to studies, more than 80% of Ethiopians use plant-based traditional medicine as their primary healthcare system. ...
Article
Full-text available
Background: Free radicals are very reactive molecules produced during oxidation events that in turn initiate a chain reaction resulting in cellular damage. Many degenerative diseases in humans, including cancer and central nervous system damage, are caused by free radicals. Scientific evidence indicates that active compounds from natural products can protect cells from free radical damage. As a result, the aim of this review is to provide evidence of the use of diverse Ethiopian medicinal plants with antioxidant properties that have been scientifically validated in order to draw attention and foster further investigations in this area. Methods: The keywords antioxidant, radical scavenging activities, reactive oxygen species, natural product, Ethiopian Medicinal plants, and 2, 2-Diphenyl-1-picrylhydrazyl radical scavenging assay (DPPH) were used to identify relevant data in the major electronic scientific databases, including Google Scholar, ScienceDirect, PubMed, Medline, and Science domain. All articles with descriptions that were accessed until November 2022 were included in the search strategy. Results: A total of 54 plant species from 33 families were identified, along with 46 compounds isolated. More scientific studies have been conducted on plant species from the Brassicaceae (19%), Asphodelaceae (12%), and Asteraceae (12%) families. The most used solvent and extraction method for plant samples are methanol (68%) and maceration (88%). The most examined plant parts were the leaves (42%). Plant extracts (56%) as well as isolated compounds (61%) exhibited significant antioxidant potential. The most effective plant extracts from Ethiopian flora were Bersama abyssinica, Solanecio gigas, Echinops kebericho, Verbascum sinaiticum, Apium leptophyllum, and Crinum abyssinicum. The best oxidative phytochemicals were Rutin (7), Flavan-3-ol-7-O-glucoside (8), Myricitrin (13), Myricetin-3-O-arabinopyranoside (14), 7-O-Methylaloeresin A (15), 3-Hydroxyisoagatholactone (17), β-Sitosterol-3-O-β-D-glucoside (22), Microdontin A/B (24), and Caffeic acid (39). Conclusion: Many crude extracts and compounds exhibited significant antioxidant activity, making them excellent candidates for the development of novel drugs. However, there is a paucity of research into the mechanisms of action as well as clinical evidence supporting some of these isolated compounds. To fully authenticate and then commercialize, further investigation and systematic analysis of these antioxidant-rich species are required.
... In the present study, we utilize knipholone, an axially chiral phenylanthraquinone isolated from Kniphofia foliosa, as a lead for the synthesis of new antimicrobial compounds. The plant species from which knipholone is found as a chemotaxonomic marker have strong traditional claim for the treatment of infectious disease (Nigussie et al. 2022). However, knipholone has previously been shown to lack antimicrobial activity (van Staden and Drewes 1994). ...
Article
Full-text available
In the present study, we use knipholone as a prototype molecule to identify new anti-infective agents. Since knipholone is insoluble in water, which would have a detrimental effect on its bioavailability and efficacy, we synthesized knipholone Mannich base derivatives (2-4) that have better predicted solubility and investigated their in vitro antimicrobial activity against eight pathogenic bacterial and fungal strains. The chemical structures of compounds 1-4 were elucidated from their 1H and 13C NMR data, and their antimicrobial activity evaluation was carried out by a broth microdilution MTT assay. Compound 3 exhibited the strongest efficacy against Staphylococcus epidermidis, with MIC value of 9.7 µg/mL. While 4 exhibited the best activity against Staphylococcus aureus, with an MIC value of 19.5 µg/mL, and was the only one to significantly inhibit the fungus Trichophyton mentagrophytes (MIC = 78.2 µg/mL). The study provides evidence for the antibacterial activity of aminoalkyl derivatives of knipholone.
Article
Full-text available
Bersama (Melianthaceae) has been used in traditional medicine for a wide range of ailments, including blood purifier, immune booster, psychotropic medication, and treatment for malaria, hepatitis, infertility, diabetes, impotency, meningitis, and stroke. This review gathers fragmented information from the literature on ethnomedicinal applications, phytochemistry, pharmacology, and toxicology of the Bersama genus. It also explores the therapeutic potential of the Bersama genus in ethnophytopharmacology, allowing for further investigation. All the available information published in the English language on Bersama genus was compiled from electronic databases such as Academic Journals, Ethnobotany, Google Scholar, PubMed, Science Direct, Web of Science, and library search using the following keywords: “Bersama genus,” “traditional use,” “phytochemistry,” “pharmacological effects,” and “toxicology”. The ethnomedical applications of the Bersama genus have been recorded, and it has been used traditionally for more than 30 different types of ailments. Thus far, more than 50 compounds have been isolated from the genus. Cardiac glycosides and terpenoids are the main compounds isolated from the Bersama genus. Different plant parts of Bersama genus extracts demonstrated a wide range of pharmacological properties, including antioxidant, antimalarial, antidiabetic, antiviral, anti-inflammatory, and cytotoxic activity. Exemplary drug leads from the genus include mangiferin and quercetin-3-O-arabinopyranoside, both of which have antioxidant activities. Bersama genus has long been used to cure a wide range of ailments. Bersama genus extracts and phytochemicals have been found to have promising pharmacological activities. Further study on promising crude extracts and compounds is required to develop innovative therapeutic candidates.