| Illustration of the potential complexity of interacting processes at volcanic islands that may precondition and trigger submarine landslides and turbidity currents. Plus signs and arrowed lines indicate how an increase in a variable may make a subsequent process more likely. Figure shows scenarios where volcanic factors may dominate (dark gray) and where climatic or anthropogenic factors may be more important (light gray). An animated version of this figure is available in the online material. Yellow circle refers to ultimately triggered event (landslide or turbidity current).

| Illustration of the potential complexity of interacting processes at volcanic islands that may precondition and trigger submarine landslides and turbidity currents. Plus signs and arrowed lines indicate how an increase in a variable may make a subsequent process more likely. Figure shows scenarios where volcanic factors may dominate (dark gray) and where climatic or anthropogenic factors may be more important (light gray). An animated version of this figure is available in the online material. Yellow circle refers to ultimately triggered event (landslide or turbidity current).

Source publication
Preprint
Full-text available
Submerged flanks of volcanic islands are prone to hazards including submarine landslides that may trigger damaging tsunamis and fast-moving sediment-laden seafloor flows (turbidity currents) that break critical seafloor infrastructure. Small Island Developing States are particularly vulnerable to these hazards due to their remote and isolated natur...

Similar publications

Article
Full-text available
Submerged flanks of volcanic islands are prone to hazards including submarine landslides that may trigger damaging tsunamis and sediment-laden seafloor flows (called “turbidity currents”). These hazards can break seafloor infrastructure which is critical for global communications and energy transmission. Small Island Developing States are particula...