Hydrothermal process

Hydrothermal process

Source publication
Article
Full-text available
Continuous exposure to formaldehyde may cause injury to the central nervous, respiratory, blood, and immunological systems. Tapered U-shape plastic optical fiber (POF) coated with zinc oxide nanorods was evaluated at wavelength of 645 nm for formaldehyde vapor sensing within a concentration range from 5% to 20%. The tapered POF with 500 μm waist di...

Context in source publication

Context 1
... seeding and growth processes were followed according to the previous methods reported in Ref [35] [36]. Figure 2 show the hydrothermal process of ZnO nanorods coated around the whole surface of the tapered POF. 3 Preparation of Tapered U-shape POF coated with ZnO After the process was completed, the both of fiber tips were inserted into a plastic holder to form a U-shape structure with a radius of 3 cm. Figure 3 show the tapered U-shape fiber coated with ZnO nanordos fabrication with diamater of 6 cm. 4 Preparation of formalin The formalin concentration was measured by diluting the formaldehyde with DI water. ...

Similar publications

Article
Full-text available
The inadvertent discharge of industrial effluents, mainly textile, contributes to the complex contamination load in water bodies. Textile dyes are the critical effluents and recalcitrant to traditional remediation procedures. Therefore, energy viable and environment friendly solutions are needed. In this study, we have synthesized zinc oxide nanoro...
Article
Full-text available
Numerous investigations have been conducted to increase the sensitivity and stability of metal oxide semiconductors as pH-sensing membranes. This paper will describe the pH sensing and characterisation of zinc oxide (ZnO) and aluminium-doped zinc oxide (ZnO:Al) as potentiometric pH sensors. The hydrothermal technique was used to grow ZnO and ZnO:Al...
Article
Full-text available
In the present investigation, zinc oxide nanorods (ZnO-NR) were synthesized via the hydrothermal method using ZnCl2 as a zinc ion precursor in the presence of cetyltrimethylammonium bromide. Synthesized ZnO-NR was featured using advanced techniques including XRD, PL, SEM, and UV-visible spectroscopy. The role of these assynthesized ZnO-NR was evalu...
Article
Full-text available
The low-temperature microwave-assisted hydrothermal method was used to successfully grow pure and Al-doped ZnO (AZO) nanorod (NR) arrays on glass substrates. The combined effects of doping and pH on the structural properties, surface chemistry, and optical properties of all samples were investigated. Thermodynamic-based simulations of the growth so...
Article
Full-text available
Mechanical strain has been shown to be a versatile and tunable means to control various properties of nanomaterials. In this work, we investigate how strain applied to individual ZnO nanorods (NRs) can affect the fluorescence signals originated from external sources of bioanalytes, which are subsequently coupled and guided onto the NRs. Specificall...

Citations

Article
Full-text available
Optical fibre sensors are an essential subset of optical fibre technology, designed specifically for sensing and measuring several physical parameters. These sensors offer unique advantages over traditional sensors, making them gradually more valuable in a wide range of applications. They can detect extremely small variations in the physical parameters they are designed to measure, such as analytes in the case of biosensing. This high sensitivity allows them to detect subtle variations in temperature, pressure, strain, the refractive index of analytes, vibration, and other environmental factors with exceptional accuracy. Moreover, these sensors enable remote sensing capabilities. Since light signals are used to carry information, the sensing elements can be placed at distant or inaccessible sites and still communicate the data back to the central monitoring system without signal degradation. In recent times, different attractive configurations and approaches have been proposed to enhance the sensitivity of the optical fibre-based sensor and are briefly explained in this review. However, we believe that the choice of optical fibre sensor configuration should be designated based on the specific application. As these sensors continue to evolve and improve, they will play an increasingly vital role in critical monitoring and control applications across various industries.
Article
Full-text available
Optical fiber sensors based on tapered optical fiber (TOF) structure have attracted a considerable amount of attention from researchers due to the advantages of simple fabrication, high stability, and diverse structures, and have great potential for applications in many fields such as physics, chemistry, and biology. Compared with conventional optical fibers, TOF with their unique structural characteristics significantly improves the sensitivity and response speed of fiber-optic sensors and broadens the application range. This review presents an overview of the latest research status and characteristics of fiber-optic sensors and TOF sensors. Then, the working principle of TOF sensors, fabrication schemes of TOF structures, novel TOF structures in recent years, and the growing emerging application areas are described. Finally, the development trends and challenges of TOF sensors are prospected. The objective of this review is to convey novel perspectives and strategies for the performance optimization and design of TOF sensors based on fiber-optic sensing technologies.
Preprint
Full-text available
Optical fiber sensors based on tapered optical fiber (TOF) structure have attracted a considerable amount of attention from researchers due to the advantages of simple fabrication, high stability, diverse structures, and have great potential for applications in many fields such as physics, chemistry and biology. Compared with ordinary optical fibers, TOF with their unique structural characteristics significantly improve the sensitivity and response speed of fiber-optic sensors and broaden the application range. This review presents an overview of the latest research status and characteristics of fiber-optic sensors and TOF sensors. Then the working principle of TOF sensors, fabrication schemes of TOF structures, novel TOF structures in recent years, and the growing emerging application areas are described. Finally, the development trends and challenges of TOF sensors are prospected. The objective of this review is to convey novel perspectives and strategies for the performance optimization and design of TOF sensors based on fiber-optic sensing technologies.