Fig 1 - uploaded by Víctor J. Rico
Content may be subject to copyright.
Heteroacanthella ellipsospora (holotype, MAF-Lich. 18273). A & B, habit, arrows point to apothecia with gall-like areas; C, hymenium; D–F, basidia; G–I, acanthohyphidia-like cells; J, clamp in a primary septum; K–M, basidiospores. All images except A and B of material stained with phloxin B in 5% KOH (DIC). Scales: A & B ¼ 0Á5 mm; C ¼ 50 mm; D–I ¼ 10 mm; J–M ¼ 5 mm. In colour online.  

Heteroacanthella ellipsospora (holotype, MAF-Lich. 18273). A & B, habit, arrows point to apothecia with gall-like areas; C, hymenium; D–F, basidia; G–I, acanthohyphidia-like cells; J, clamp in a primary septum; K–M, basidiospores. All images except A and B of material stained with phloxin B in 5% KOH (DIC). Scales: A & B ¼ 0Á5 mm; C ¼ 50 mm; D–I ¼ 10 mm; J–M ¼ 5 mm. In colour online.  

Source publication
Article
Full-text available
Heteroacanthella ellipsospora is described as new to science. It is the only known lichenicolous Heteroacanthella, always found parasitizing apothecia and the surrounding thallus of the crustose epiphytic lichen Lecanora carpinea. The new parasite has so far only been found in two Spanish provinces, Jaén and Madrid. The shape and size of its basidi...

Similar publications

Thesis
Full-text available
Vascular Epiphytes are long life herbaceous plants that spend most of their life cycle upon other plants and live in habitats with a high degree of disturbance and abiotic stress. There are about 29,000 epiphytic species in 84 families, representing 10% of the vascular flora world. These plants provide valuable resources to the canopy fauna, such a...

Citations

... Heteroacanthella is typified by H. variabilis (Oberwinkler et al. 1990). Zamora et al. (2014) regarded H. acanthophysa and H. variabilis as congeneric and added a third species. Heteroacanthella is more widely used than Acanthellorhiza (GSS Heteroacanthella = 35, Acanthellorhiza = 4). ...
Article
Full-text available
With the change to one scientific name for fungal taxa, generic names typified by species with sexual or asexual morph types are being evaluated to determine which names represent the same genus and thus compete for use. In this paper generic names of the Agaricomycotina ( Basidiomycota ) were evaluated to determine synonymy based on their type. Forty-seven sets of sexually and asexually typified names were determined to be congeneric and recommendations are made for which generic name to use. In most cases the principle of priority is followed. However, 16 generic names are recommended for use that do not have priority and thus need to be protected: Aleurocystis over Matula; Armillaria over Acurtis and Rhizomorpha; Asterophora over Ugola; Botryobasidium over Acladium , Allescheriella, Alysidium, Haplotrichum , Physospora, and Sporocephalium; Coprinellus over Ozonium; Coprinopsis over Rhacophyllus; Dendrocollybia over Sclerostilbum and Tilachlidiopsis; Diacanthodes over Bornetina; Echinoporia over Echinodia; Neolentinus over Digitellus; Postia over Ptychogaster; Riopa over Sporotrichum; Scytinostroma over Artocreas, Michenera , and Stereofomes; Tulasnella over Hormomyces; Typhula over Sclerotium; and Wolfiporia over Gemmularia and Pachyma. Nine species names are proposed for protection: Botryobasidium aureum, B. conspersum , B. croceum , B. simile, Pellicularia lembosporum (syn. B. lembosporum ), Phanerochaete chrysosporium , Polyporus metamorphosus (syn. Riopa metamorphosa ), Polyporus mylittae (syn. Laccocephalum mylittae ), and Polyporus ptychogaster (syn . Postia ptychogaster ). Two families are proposed for protection: Psathyrellaceae and Typhulaceae . Three new species names and 30 new combinations are established, and one lectotype is designated.
... This was particularly the case in the genera Biatoropsis, Chionosphaera, Cystobasidium and Syzygospora, where the classification was principally based on basidium morphology and was still uncertain at that time (Diederich 1996). The same is true for Heteroacanthella ellipsospora, which is so far the only described lichenicolous species with acanthoid basidia (Zamora et al. 2014). Diederich (1996) studied not only sexual stages of heterobasidiomycetes, but also numerous conidia-forming species. ...
Article
Full-text available
The lichenicolous ‘heterobasidiomycetes’ belong in the Tremellomycetes (Agaricomycotina) and in the Pucciniomycotina. In this paper, we provide an introduction and review of these lichenicolous taxa, focusing on recent studies and novelties of their classification, phylogeny and evolution. Lichen-inhabiting fungi in the Pucciniomycotina are represented by only a small number of species included in the genera Chionosphaera , Cyphobasidium and Lichenozyma . The phylogenetic position of the lichenicolous representatives of Chionosphaera has, however, never been investigated by molecular methods. Phylogenetic analyses using the nuclear SSU, ITS, and LSU ribosomal DNA markers reveal that the lichenicolous members of Chionosphaera form a monophyletic group in the Pucciniomycotina, distinct from Chionosphaera and outside the Chionosphaeraceae . The new genus Crittendenia is described to accommodate these lichen-inhabiting species. Crittendenia is characterized by minute synnemata-like basidiomata, the presence of clamp connections and aseptate tubular basidia from which 4–7 spores discharge passively, often in groups. Crittendenia , Cyphobasidium and Lichenozyma are the only lichenicolous lineages known so far in the Pucciniomycotina, whereas Chionosphaera does not include any lichenicolous taxa.
... Simple, 1-spored basidia are highly unusual in the Basidiomycota, and in most cases species characterised by 1-spored basidia belong to genera with a variable number of spores produced per basidium, e.g., Heteroacanthella, Lactarius, Oliveonia, Russula, Septobasidium, and Tremella s.lat. (Zamora et al. 2014, 2016, Vidal et al. 2019. This result, together with the phylogenetic position of Dacryonaema, allowed inferring the bisterigmate basidium as the most probable ancestral state for the Dacrymycetes in most analyses. ...
Article
Full-text available
We present a multilocus phylogeny of the class Dacrymycetes , based on data from the 18S, ITS, 28S, RPB1 , RPB2 , TEF-1α , 12S, and ATP6 DNA regions, with c. 90 species including the types of most currently accepted genera. A variety of methodological approaches was used to infer phylogenetic relationships among the Dacrymycetes , from a supermatrix strategy using maximum likelihood and Bayesian inference on a concatenated dataset, to coalescence-based calculations, such as quartet-based summary methods of independent single-locus trees, and Bayesian integration of single-locus trees into a species tree under the multispecies coalescent. We evaluate for the first time the taxonomic usefulness of some cytological phenotypic characters, i.e., vacuolar contents (vacuolar bodies and lipid bodies), number of nuclei of recently discharged basidiospores, and pigments, with especial emphasis on carotenoids. These characters, along with several others traditionally used for the taxonomy of this group (basidium shape, presence and morphology of clamp connections, morphology of the terminal cells of cortical/marginal hyphae, presence and degree of ramification of the hyphidia), are mapped on the resulting phylogenies and their evolution through the class Dacrymycetes discussed. Our analyses reveal five lineages that putatively represent five different families, four of which are accepted and named. Three out of these four lineages correspond to previously circumscribed and published families ( Cerinomycetaceae , Dacrymycetaceae , and Unilacrymaceae ), and one is proposed as the new family Dacryonaemataceae . Provisionally, only a single order, Dacrymycetales , is accepted within the class. Furthermore, the systematics of the two smallest families, Dacryonaemataceae and Unilacrymaceae , are investigated to the species level, using coalescence-based species delimitation on multilocus DNA data, and a detailed morphological study including morphometric analyses of the basidiospores. Three species are accepted in Dacryonaema , the type, Da. rufum , the newly combined Da. macnabbii (basionym Dacrymyces macnabbii ), and a new species named Da. macrosporum . Two species are accepted in Unilacryma ,the new U. bispora , and the type, U. unispora , the latter treated in a broad sense pending improved sampling across the Holarctic.
... New to Fennoscandia. These are the first records after the description of the species from the Iberian Peninsula (Zamora et al. 2014). It is likely to be common given the abundance of the host, Lecanora carpinea, but difficult to find in the field because it forms highly inconspicuous galls or simple discolourings. ...
Article
Full-text available
2019. Additions to the lichen flora of Fennoscandia III. Graphis Scripta 31 (5): 34-46. Oslo. ISSN 2002-4495. Six lichen-forming fungi, Ameliella grisea, Bacidina mendax, B. modesta, Biatora chrysanthoides, B. radicicola and Micarea sambuci, as well as seven lichenicolous fungi, Adelococcus alpestris, Heteroacanthella ellipsospora, Llimoniella catapyrenii, Sphaerellothecium siphulae, Tremella christiansenii, T. macrobasidiata and T. tuckerae, are reported for the first time from Sweden. Bacidina mendax and Biatora radicicola are also reported as new to Norway and Bacidina indigens is reported as new to Finland. The new combination Bacidina modesta (Zwackh ex Vain.) S. Ekman is proposed and Raphiospora viridescens, a synonym of Bacidia bagliettoana that has been misused for Bacidina indigens, is lectotypified.
Article
Zamora J.C., Millanes A.M., Etayo J. & Wedin M. 2018: Tremella mayrhoferi, a new lichenicolous species on Lecanora allophana. – Herzogia 31: 666–676.Tremella mayrhoferi, inducing galls on the hymenium of Lecanora allophana, is described. The description is based on molecular, morphological and ecological data of 27 specimens from Finland, Norway, Spain, Sweden, and USA. The new species is easily distinguished from other lichenicolous Tremella species by its characteristic basidia with cells that elongate before the formation of epibasidia, combined with the macromorphology and host selection. Molecular phylogeny suggests that it forms a group with other species growing on Lecanora s. lat. and Lecidea s. lat., which is related to the Tremella species growing on Parmeliaceae, but not to Tremella s. str.
Article
Full-text available
Lichenicolous fungi represent a highly specialized and successful group of organisms that live exclusively on lichens, most commonly as host-specific parasites, but also as broad-spectrum pathogens, saprotrophs or commensals. We present here the most recent update to the classification of lichenicolous fungi in the Ascomycota and Basidiomycota to genus level, arranged phylogenetically according to published classifications. For each genus, all known lichenicolous taxa (obligately lichenicolous taxa, lichenicolous lichens, and facultatively lichenicolous taxa) are listed, along with information about types, synonyms, pertinent literature and whether or not molecular data are available for any of the listed species. The number of accepted lichenicolous fungi is now 2319, with 2000 obligately lichenicolous species, subspecies or varieties, 257 lichenicolous lichens and 62 facultatively lichenicolous taxa. These species are found in 10 different classes of Fungi (Ascomycota and Basidiomycota), 55 orders, 115 families and 397 genera. The 2319 total taxa is an increase from the 1559 total species reported in the last published catalogue in 2003, and a larger number than the approximately 1800 reported in the most recent online checklist (www.lichenicolous.net) posted in January 2018. Of the total number of taxa, 2219 (96%) are ascomycetes and 100 (4%) are basidiomycetes. Of the 397 genera containing lichenicolous species, c. 50% (198) are entirely lichenicolous. In addition, six families (Abrothallaceae, Adelococcaceae, Cyphobasidiaceae, Obryzaceae, Polycoccaceae, Sarcopyreniaceae) and two orders (Abrothallales, Cyphobasidiales) are entirely lichenicolous. Sequence information is available for lichenicolous species in 128 (32%) of the 397 genera containing lichenicolous species, and in 56 (28%) of the 198 entirely lichenicolous genera. Many species are known from only one host lichen, but it is likely that broader host ecologies will be discovered as new sequence information is obtained from ongoing microbiome studies. Phaeopyxis Rambold & Triebel is considered as a new synonym of Bachmanniomyces D.Hawksw., resulting in five new combinations B. australis (Rambold & Triebel) Diederich & Pino-Bodas (≡ P. australis), B. carniolicus (Arnold) Diederich & Pino-Bodas (≡ Biatora carniolica), B. muscigenae (Alstrup & E.S.Hansen) Diederich & Pino-Bodas (≡ P. muscigenae), B. punctum (A.Massal.) Diederich & Pino-Bodas (≡ Nesolechia punctum) and B. varius (Coppins, Rambold & Triebel) Diederich & Pino-Bodas (≡ P. varia). As a consequence of a phylogenetic analysis including new sequences, Dactylospora Körb. is regarded as a new synonym of Sclerococcum Fr.: Fr., resulting in one new name (S. acarosporicola Ertz & Diederich) and 46 new combinations. Sclerococcaceae Réblová, Unter. & W.Gams is considered as a new synonym of Dactylosporaceae Bellem. & Hafellner. The new Sclerococcum ophthalmizae Coppins is described. Sclerophyton occidentale Herre is lectotypified on the lichenicolous fungus present in the type specimen and becomes a younger synonym of Sclerococcum parasiticum. A replacement name is Arthonia polydactylonis Diederich & Ertz (≡ A. ceracea). Further new combinations are Abrothallus lobariae (Diederich & Etayo) Diederich & Ertz (≡ Phoma lobariae), A. psoromatis (Zhurb. & U. Braun) Diederich & Zhurb. (≡ P. psoromatis), Asteroglobulus pyramidalis (Etayo) Diederich (≡ Cornutispora pyramidalis), Didymocyrtis grumantiana (Zhurb. & Diederich) Zhurb. & Diederich (≡ Phoma grumantiana), Epithamnolia atrolazulina (Etayo) Diederich (≡ Hainesia atrolazulina), Gyalolechia epiplacynthium (Etayo) Diederich (≡ Fulgensia epiplacynthium), Nesolechia doerfeltii (Alstrup & P.Scholz) Diederich (≡ Phacopsis doerfeltii), N. falcispora (Triebel & Rambold) Diederich (≡ P. falcispora), N. oxyspora var. fusca (Triebel & Rambold) Diederich (≡ P. oxyspora var. fusca), Preussia peltigerae (Brackel) Diederich (≡ Sporormiella peltigerae), Scutula curvispora (D.Hawksw. & Miadl.) Diederich (≡ Libertiella curvispora), S. didymospora (D.Hawksw. & Miadl.) Diederich (≡ L. didymospora), Stigmidium haesitans (Nyl.) Diederich (≡ Verrucaria haesitans), and S. parvum (Henssen) Diederich (≡ Pharcidia parvum). © 2018 by The American Bryological and Lichenological Society, Inc.
Article
Full-text available
A taxonomic monograph of the ascomycete genus Taeniolella (asexual dematiaceous hyphomycetes, sexual morphs unknown) is provided. Recent phylogenetic analyses demonstrated the polyphyly of this genus. The type species of Taeniolella pertains to the Kirschsteiniotheliaceae within Dothideomycetes, while other saprobic species clustered far away within Sordariomycetes, Savoryellaceae s. lat., and Lindgomycetaceae, whereas lichenicolous species belong to a monophyletic clade that represents the order Asterotexiales, but for most species assigned to Taeniolella sequence data and phylogenetic analyses are not yet available. The main focus of the present taxonomic study was on a revision of the lichenicolous Taeniolella species. Since the currently available phylogenetic analyses do not allow final taxonomic conclusions at generic rank, the exclusion of lichenicolous species from Taeniolella s. lat. has been postponed pending a broader sampling and more phylogenetic data of allied ascomycete genera within the order Asterotexiales. For the interim, Taeniolella s. lat., including lichenicolous and saprobic species, is maintained. The taxonomic background, history, generic description and discrimination from morphologically confusable genera, phylogeny, biology, host range and distribution, and species concept of Taeniolella species are briefly outlined and discussed. Keys to the species of Taeniolella divided by ecological groups (lichenicolous taxa, saprobic taxa) are provided, supplemented by a tabular key to lichenicolous species based on host (lichen) families and genera. Twenty-nine lichenicolous species and a Taeniolella sp. (putative asexual morph of Sphaerellothecium thamnoliae) as well as 16 saprobic species are described in detail and illustrated by drawings, macroscopic photographs, light microscopic and SEM micrographs, including six new lichenicolous species (T. arctoparmeliae on Arctoparmelia separata, T. lecanoricola on Lecanora rupicola, T. thelotrematis on Thelotrema, T. umbilicariae and T. umbilicariicola on Umbilicaria, T. weberi on Thelotrema weberi), three new saprobic species (T. filamentosa on Salix, T. ravenelii on Quercus, T. stilbosporoides on Salix caprea), and one new combination, T. arthoniae. Most saprobic Taeniolella species are wood-inhabiting (on bark, decorticated trunks and twigs, rotten wood), whereas lichenicolous species grow on thalli and fruiting bodies (mostly apothecia) of lichens, mostly without causing any evident damage, but they are nevertheless confined to their host lichens, or they are obviously pathogenic and cause either disease of the thalli (e.g., Taeniolella chrysothricis and T. delicata) or at least thallus discolorations or necroses (e.g., T. christiansenii, T. chrysothricis, T. cladinicola, T. pseudocyphellariae, and T. strictae). Taeniolella atricerebrina and T. rolfii induce the formation of distinct galls. The range of micro-morphological traits for taxonomic purposes is limited in Taeniolella species, but size, shape and septation of conidiophores and conidia, including surface ornamentation, provided basic characters. Mycelium, stromata and arrangement of conidiophores are less important for the differentiation of species. Lichenicolous species are widespread on a wide range of lichens, with a focus in the northern hemisphere, mainly in northern temperate regions, including arcticsubartic habitats (18 species, i.e., 62 % of the lichenicolous species). Eleven lichenicolous species, e.g., T. pseudocyphellariae, T. santessonii, T. thelotrematis, T. umbilicariae, are also known from collections in non-temperate Asia, Australia and South America (38 % of the species). Most collections deposited in herbaria are from northern temperate to arctic-subarctic regions, which may reflect activities of lichenologists and mycologist dealing with lichenicolous fungi in general and Taeniolella in particular. Most lichenicolous Taeniolella species are confined to hosts of a single lichen genus or few closely allied genera (26 species, i.e., 97 % of the lichenicolous species), but only three species, T. delicata, T. punctata, and T. verrucosa, have wider hosts ranges. Excluded, doubtful and insufficiently known species assigned to Taeniolella are listed at the end, discussed, described and in some cases illustrated, including Talpapellis beschiana comb. nov. (≡ Taeniolella beschiana), Corynespora laevistipitata (≡ Taeniolella laevistipitata), Stanjehughesia lignicola comb. nov. (≡ Taeniolella lignicola), Sterigmatobotrys rudis (≡ Taeniolella rudis), and Taeniolina scripta (≡ Taeniolella scripta).
Article
Full-text available
Four new lichenicolous Tremella species are described and characterized morphologically and molecularly. Tremella celata grows on Ramalina fraxinea, inducing the formation of inconspicuous galls, and having hyphae with incomplete clamps. Tremella endosporogena develops intrahymenially in the apothecia of Lecanora carpinea, having single-celled basidia and clampless hyphae. Tremella diederichiana is the name proposed for a species micromorphologically close to T. christiansenii but inducing the formation of small, pale galls on the thallus and apothecia of Lecidea aff. erythrophaea Tremella variae grows on Lecanora varia thallus, instead of on the apothecia, as do the other known Tremella species parasitizing Lecanora s.l. Phylogenetic relationships and host specificity of these species are investigated and compared with other taxa that show morphological resemblances, phylogenetic affinities or similar hosts. The formation of mitotic conidia inside old basidia (endospores), which is a poorly known reproductive strategy in the Basidiomycota, is also a distinctive character of Tremella endosporogena A discussion on the reproductive role and systematic implications of endospores is included.