Figure - available via license: CC BY
Content may be subject to copyright.
Genes linked to human eye disorders.

Genes linked to human eye disorders.

Source publication
Article
Full-text available
Successful sequencing of the human genome and evolving functional knowledge of gene products has taken genomic medicine to the forefront, soon combining broadly with traditional diagnostics, therapeutics, and prognostics in patients. Recent years have witnessed an extraordinary leap in our understanding of ocular diseases and their respective genet...

Context in source publication

Context 1
... on the genetic findings, it is evident that an early diagnosis through genetic testing can help evaluate patients' conditions for deciding on the treatment plan(s) and follow-up care to avoid or delay irreversible vision loss (21). Today it is accepted that genetics play a significant role in the causation and progression of ocular disorders; a few of which are listed in Table 2 and briefly covered in this review. ...

Citations

... This ratio is four-to six-fold higher than reports from the US or other countries; this relatively higher incidence of RP has been attributed to high rates of consanguinity in rural Indian populations (Nirmalan et al. 2006;Gopinath et al. 2023). Researchers at Narayana Nethralaya Foundation (NNF), Bengaluru, are developing cost-effective gene therapy vectors for keratoconus (Panikker et al. 2022;Sarkar et al. 2023), LCA, DMD, and Stargardt disease. NNF works on dual AAV vector systems (Ghosh et al. 2011), a unique modality of accommodating large therapeutic genes into AAV vectors. ...
Article
Inherited genetic disorders are progressive in nature and lead to organ dysfunction or death in severe cases. At present, there are no permanent treatment options for >95% of inherited disorders. Different modes of inheritance, type of gene(s) involved, and population-based variations add further complexity to finding suitable cures for approximately 400 million patients worldwide. Gene therapy is a very promising molecular technique for the treatment of rare genetic disorders. Gene therapy functions on the basis of restoration, replacement, inhibition, and, most recently, editing of gene(s) to rescue the disease phenotype. Recent reports show that increasing numbers of gene therapy clinical trials are using viral vectors (64.2%) when compared with non-viral vectors. Rapid development of efficient viral vector systems like the adeno-associated virus (AAV) and lentivirus has significantly contributed to this progress. Notably, AAV-mediated gene therapy has shown high potential for genetic disease treatment as evident from recent clinical trials for the eye (NCT00999609), blood (NCT00979238), and neuro-muscular systems (NCT02122952). Safety and efficacy are the two most critical features required for vector(s) to qualify for pre-clinical and clinical trial approval. The process of clinical-grade vector production, evaluation, and approvals for gene therapy products requires significant technological development, knowledge enhancement, and large financial investments. Additionally, trained manpower is required to meet the demands for constant technical innovation. These factors together contribute towards exorbitant prices for every dose of a gene therapy product and thus pose a challenge for the gene therapy field. The Indian subcontinent has traditionally lagged behind North America, Europe, Japan, and others in gene therapy clinical trials due to factors like inadequate industrial-scientific infrastructure, lack of accessible and organized patient databases, low financial investments, etc. However, over the last decade, increasing awareness of rare diseases, and international approvals of gene therapies such as Luxturna, Zolgensma, Hemgenix, etc., have spurred gene therapy development in India as well. In view of these advances, this article outlines gene therapy research, regulatory processes, and the launch of gene therapy clinical trials in India in the context of major developments worldwide. We briefly describe ongoing gene therapy research across Indian organizations and the nascent gene therapy product manufacturing. Further, we highlight the various initiatives from the medical and patient community to avail rehabilitation and gene therapy options. We briefly discuss the roles of regulatory agencies and guidelines for gene therapy clinical trials in India. We anticipate that this concise review will highlight the promise of gene therapy for the large population of rare disease patients in India.
Article
Full-text available
Up to 25% of pediatric cataract cases are inherited. There is sparse information in the literature regarding the cost of whole-exome sequencing (WES) for suspected hereditary pediatric cataracts. Molecular diagnosis of suspected hereditary pediatric cataracts is important for comprehensive genetic counseling. We performed a partial economic evaluation with a mixed costing analysis, using reimbursement data and microcosting approach with a bottom-up technique to estimate the cost of using WES for genetic diagnosis of suspected hereditary pediatric cataracts from the perspective of the Brazilian governmental health care system. One hundred and ten participants from twenty-nine families in Rio de Janeiro (RJ) were included. Costs of consumables, staff and equipment were calculated. Two scenarios were created: (1) The reference scenario included patients from RJ with suspected hereditary pediatric cataracts plus two family members. (2) The alternative scenario considered other genetic diseases, resulting in 5,280 exams per month. Sensitivity analysis was also performed. In the reference scenario, the total cost per exam was 700.09 United States dollars (USD), and in the alternative scenario, the total cost was 559.23 USD. The cost of WES alone was 527.85 USD in the reference scenario and 386.98 USD in the alternative scenario. Sensitivity analysis revealed that the largest costs were associated with consumables in both scenarios. Economic evaluations can help inform policy decisions, especially in middle-income countries such as Brazil.
Article
Full-text available
Glaucoma, an age-related neurodegenerative disease, is characterized by the death of retinal ganglion cells (RGCs) and the corresponding loss of visual fields. This disease is the leading cause of irreversible blindness worldwide, making early diagnosis and effective treatment paramount. The pathophysiology of primary open-angle glaucoma (POAG), the most common form of the disease, remains poorly understood. Current available treatments, which target elevated intraocular pressure (IOP), are not effective at slowing disease progression in approximately 30% of patients. There is a great need to identify and study treatment options that target other disease mechanisms and aid in neuroprotection for POAG. Increasingly, the role of mitochondrial injury in the development of POAG has become an emphasized area of research interest. Disruption in the function of mitochondria has been linked to problems with neurodevelopment and systemic diseases. Recent studies have shown an association between RGC death and damage to the cells’ mitochondria. In particular, oxidative stress and disrupted oxidative phosphorylation dynamics have been linked to increased susceptibility of RGC mitochondria to secondary mechanical injury. Several mitochondria-targeted treatments for POAG have been suggested, including physical exercise, diet and nutrition, antioxidant supplementation, stem cell therapy, hypoxia exposure, gene therapy, mitochondrial transplantation, and light therapy. Studies have shown that mitochondrial therapeutics may have the potential to slow the progression of POAG by protecting against mitochondrial decline associated with age, genetic susceptibility, and other pathology. Further, these therapeutics may potentially target already present neuronal damage and symptom manifestations. In this review, the authors outline potential mitochondria-targeted treatment strategies and discuss their utility for use in POAG.
Article
Full-text available
Background: A plethora of inflammatory, angiogenic, and tissue remodeling factors has been reported in idiopathic epiretinal membranes (ERMs). Herein we focused on the expression of a few mediators (oxidative, inflammatory, and angiogenic/vascular factors) by means of short-term vitreal cell cultures and biomolecular analysis. Methods: Thirty-nine (39) ERMs and vitreal samples were collected at the time of vitreoretinal surgery and biomolecular analyses were performed in clear vitreous, vitreal cell pellets, and ERMs. ROS products and iNOS were investigated in adherent vitreal cells and/or ERMs, and iNOS, VEGF, Ang-2, IFNγ, IL18, and IL22 were quantified in vitreous (ELISA/Ella, IF/WB); transcripts specific for iNOS, p65NFkB, KEAP1, NRF2, and NOX1/NOX4 were detected in ERMs (PCR). Biomolecular changes were analyzed and correlated with disease severity. Results: The higher ROS production was observed in vitreal cells at stage 4, and iNOS was found in ERMs and increased in the vitreous as early as at stage 3. Both iNOS and NOX4 were upregulated at all stages, while p65NFkB was increased at stage 3. iNOS and NOX1 were positively and inversely related with p65NFkB. While NOX4 transcripts were always upregulated, NRF2 was upregulated at stage 3 and inverted at stage 4. No significant changes occurred in the release of angiogenic (VEGF, Ang-2) and proinflammatory (IL18, IL22 and IFNγ) mediators between all stages investigated. Conclusions: ROS production was strictly associated with iNOS and NOX4 overexpression and increased depending on ERM stadiation. The higher iNOS expression occurred as early as stage 3, with respect to p65NFkB and NRF2. These last mediators might have potential prognostic values in ERMs as representative of an underneath retinal damage.
Article
Full-text available
Current cortical visual prosthesis approaches are primarily unidirectional and do not consider the feed-back circuits that exist in just about every part of the nervous system. Herein, we provide a brief overview of some recent developments for better controlling brain stimulation and present preliminary human data indicating that closed-loop strategies could considerably enhance the effectiveness, safety, and long-term stability of visual cortex stimulation. We propose that the development of improved closed-loop strategies may help to enhance our capacity to communicate with the brain.