Fig 4 - uploaded by Alycia Gailey
Content may be subject to copyright.
Frequency spectrum of a square wave at a frequency of 1000 Hz.

Frequency spectrum of a square wave at a frequency of 1000 Hz.

Source publication
Article
Full-text available
The primary objective of the activity presented here is to allow students to explore the frequency components of various simple signals, with the ultimate goal of teaching them how to remove unwanted noise from a voice signal. Analysis of the frequency components of a signal allows students to design filters that remove unwanted components of a sig...

Contexts in source publication

Context 1
... have the students select a square waveform as in- dicated in Fig. 3. This time, students should see multiple frequency peaks (see Fig. 4) because the square wave is a summation of multiple sinusoid waveforms. 8 During rising or falling square-wave edges, the signal changes very quickly from low to high or high to low. Fast changing parts of a sig- nal give the signal higher frequencies than the 1000-Hz base frequency, resulting in the peaks at higher ...
Context 2
... students listen to the square waveform, they may notice that even though the square wave is set to the same fre- quency as the sine wave, it sounds like a combination of tones of various pitches. Only the odd-numbered overtones are present, as expected from considering the symmetry of the square-wave signal (see Fig. ...
Context 3
... should compare the frequency spectrum of the sawtooth wave (see Fig. 5) to the frequency spectrum of the sine wave (Fig. 2) and square wave (Fig. 4) of the same fre- quency. How does the distribution of frequency harmonics compare to that of a sine wave or square wave? Could differ- ences in frequency distribution explain the differences in the overall sound of the ...

Citations

... desde una perspectiva más lúdica, podemos descubrir experiencias como la composición de paisajes sonoros de terror para videojuegos o películas con la intención crear patrones sonoros emocionales que creen una percepción de inmersión dentro de una atmósfera tensa(Lopes, Liapis y Yannakis, 2017).Herramienta pedagógica o didácticaEn este estudio no solo se ha puesto el foco en el propio software per se, sino en las experiencias que surgen a través de este, para la implantación de acciones formativas y pedagógicas que sirven para ejemplificar, mostrar o demostrar eventos desde una perspectiva didáctica y desde multiplicidad de áreas. En ellas, Audacity se explota, entre otros usos, como analizador de espectros; lo cual servirá para, a través de ejemplos, desarrollar la comprensión física de un fenómeno sonoro en alumnado universitario(Gailey, 2015) o de efectos sonoros concretos, como el efecto Doppler(Dias, Carvalho y Rodrigues, 2016), en áreas como la física. ...
Article
Full-text available
En este artículo se analiza la relevancia de Audacity para la creación de materiales educativos, tanto elaborados por docentes, como por estudiantes, ya que posee multiplicidad de funciones y aporta numerosas ventajas, a pesar de su sencillo uso. Para ello, gracias a la creación de un instrumento de análisis de contenido constituido por 8 ítems, se lleva a cabo un estudio de los paisajes sonoros creados por el alumnado del MOOC Música para el Siglo XXI, con el objeto de categorizar los fines educativos de cada uno de ellos y distinguir y caracterizar cada paisaje sonoro según los orígenes de las fuentes sonoras empleadas en función de la clasificación de Schafer (1993). Tras su análisis averiguamos que las aplicaciones didácticas se encuentran dentro de las catalogadas previamente, donde el uso de paisajes sonoros para elaborar tanto recursos musicales propiamente dichos, como relatos y representaciones sonoras a través de construcciones realizadas por el alumnado, ocupan casi el total de las 55 composiciones realizadas en este MOOC. El estudio concluye destacando que el empleo de esta herramienta da soporte a multiplicidad de áreas de conocimiento y sus capacidades como herramienta multitarea ofrece un gran abanico de perspectivas aplicables dentro de los campos de la didáctica específica y la pedagogía.
... Rangkaian sistem akuisisi data yang digunakan terdiri atas mikrofon mini sebagai penerima sinyal analog yang akan mentransfer ke bentuk sinyal digital melalui sistem elektronik komputer, kabel sebagai konduktor, laptop/PC/HP, serta software perekam dan penganalsis sinyal. Free Software yang digunakan untuk merekam sinyal adalah Audacity (http//www.audacity.sourceforge.net/.A) [3], [16]- [18]. Selain itu, audacity dimanfaatkan untuk mengukur frekuensi bunyi [3], [16]- [18]. ...
... Free Software yang digunakan untuk merekam sinyal adalah Audacity (http//www.audacity.sourceforge.net/.A) [3], [16]- [18]. Selain itu, audacity dimanfaatkan untuk mengukur frekuensi bunyi [3], [16]- [18]. Selain dapat digunakan untuk merekam dan editing sinyal audio, memvisualisasikan sinyal gelombang bunyi serta dapat membantu memahami makna dari amplitudo, frekuensi, dan superposisi, software ini dapat digunakan sebagai penganalisis sinyal dalam merepresentasikan gelombang domain waktu dan frekuensi sehingga para pengguna dapat mengamati hubungan antara amplitudo dan volume secara kualitatif yang selanjutnya dapat menggunakan skala waktu yang diketahui tersebut untuk mengukur periode atau frekuensi sinyal [3]. ...
... Selain dapat digunakan untuk merekam dan editing sinyal audio, memvisualisasikan sinyal gelombang bunyi serta dapat membantu memahami makna dari amplitudo, frekuensi, dan superposisi, software ini dapat digunakan sebagai penganalisis sinyal dalam merepresentasikan gelombang domain waktu dan frekuensi sehingga para pengguna dapat mengamati hubungan antara amplitudo dan volume secara kualitatif yang selanjutnya dapat menggunakan skala waktu yang diketahui tersebut untuk mengukur periode atau frekuensi sinyal [3]. Audacity memiliki tool "Plot spectrum" yang menampilkan analisis Fast Fourier Transform (FFT) yang dapat menjelaskan bahwa nadanada alat musik adalah superposisi dari banyak nada-nada murni [3], [16]- [18]. ...
Article
Full-text available
Studies the resonance phenomenon at the open end partially of a pipe never been found in physics learning material, causing the students conceptual about pipe resonance to be incomplete. Simple apparatus and investigation of resonance pipe system have been carried out based on the variation of open end area to know the relationship with the frequency using a PVC flute pipes without tone holes and blown with a simple balloon compressor. Sound signals generated are recorded by Audacity software and to analyze the harmonic frequency content using the Fast Fourier Transform (FFT) algorithm. The results of this study show that the variation wide of open end of the air column significantly influences the sound frequency as logarithmic. The implication of this concept can be used as a diaphragm to regulates the wide open end of a wind instrument as a tuning tone.
... The Audacity is the example of freeware software. The software is useful tools to introduce the student to understand the signal of voice and noise [4]. The Audacity software has been used to measure frequency of copper flute instrument [5]. ...
Article
Full-text available
Javanese Gamelan has been used as acoustical research to investigate the tune in terms of frequency and intensity. In this research, the bonang barung and peking frequencies were measured using Audacity. It is low cost software to record and analyze the sound. It can process the sounds to generate the FFT of them. The bonang barung and peking are part of Gamelan Gending Bahana Yogyakarta ensemble. The sounds were measured in the hall where the gamelan is located. The lowest and the highest frequencies of the first row of Laras Pelog of Bonang Barung are 609.6 ± 0.1265 Hz and 1050 ± 0.09487 Hz, respectively. For the second row, the lowest and the highest frequencies are 300.1 Hz and 512.8 Hz, respectively. The lowest and the highest frequencies of Laras Pelog of Peking are 1176.1 ± 1.1 Hz and 2101.0 ± 0.0 Hz, respectively. The lowest and the highest frequencies of Laras Slendro of Peking frequencies are 928.1 ± 2.2 Hz and 2118.1 ± 1.1 Hz, respectively. Hence, by using low cost software and non-acoustical room, the gamelan frequency measurement has been performed with high accuracy and precision.
Conference Paper
Physics is an experimental science and school physics cannot be taught without experimentation. But, how to realise an experiment in an online environment or distance learning? The immediate transition to distance learning was unexpected and brought with it great challenges. One of the biggest challenges was to transfer experiments to the distance form of teaching. Of course, several experiments can be performed at home using conventional household equipment. In physics, however, there are many areas where it is not possible to fully perform experiments in the home environment. One of these areas is sound. In this paper, we will present one of the possible ways to incorporate sound experiments into distance learning to bring the greatest possible effect in the form of new knowledge and skills. One of the most important requirements for these experiments was that students could work with them at home without the need for additional equipment and they use just software for free. For this purpose, it was necessary to adapt and adjust the method of conducting experiments. Their "transformation" consisted of preparing a scenario for recording experimental activity, making a record of the experiment, as well as modifying methodological materials. The final output of this transformation is student activities, focused - after getting acquainted with the necessary information and observing the record of the experiment - to work with the obtained data.