Fig 2 - uploaded by Assegid Kidané
Content may be subject to copyright.
Floor System overview and related network architecture 

Floor System overview and related network architecture 

Source publication
Chapter
Full-text available
We have successfully designed, developed and deployed a pressure sensing floor system with a higher frame rate, less latency, high sensor resolution, large sensing area that can provide us with real time data about the location and amount of pressure exerted on the floor. The floor has been integrated and synchronized with the marker based motion c...

Contexts in source publication

Context 1
... system in this chapter ranks among the top three in most of the dimensions of the performance criteria. Although there are four systems with frame rates higher than ours, the sensing area and sensor resolutions of these systems are much lower than our system. This chapter is an extension of our previous paper (Rangarajan, et al, 2007a) based on (Rangarajan, 2007b). This section provides essential information on pressure sensors, modular design approach used in building the large area pressure sensing floor. Later this section dives in deeper to explain the specifics of the embedded floor hardware and floor control software. Floor control hardware used in AME Floor-II (Srinivasan et al., 2005) has been retained in AME Floor-III but however the microcontroller firmware has been optimized to achieve high frame rate and reduced latency. Hardware overview given in this section creates a solid foundation to explain the optimization techniques in section 4. Force sensing resistors have been used as individual sensor entities for AME Floor-III system. They are made up of pressure sensitive polymer between conductive traces on sheets of Mylar. As the name implies, these sensors exhibit a change in resistance when pressure or force is applied on them. The value of resistance is of the order of mega ohms under no pressure and drops to few kilo ohms when pressure is applied. Each pressure sensor element has an approximate sensing area of 6 mm x 6 mm and measure 10 mm x 10 mm including the non-sensing area. Such a small size paves way for dense aggregation of sensors in the sensing space thereby resulting in higher sensor densities. It is important to note that the force sensing resistors does not give very accurate measurements of pressure or force applied as there may be 15% to 20% variation between each other. Also they suffer from a property called creep or drift where the measured resistance values tend to slowly vary when subjected to constant pressure over a long period of time thereby inducing an error in pressure measurements. However force sensing resistors can be used very effectively for relative pressure measurements and acquiring pressure distribution data which serves the purpose of wide variety of applications such as medicine for diagnosis of various gait pathologies, automotive, robotics and interactive arts applications. Force sensing resistors are generally available in several shapes and sizes like sensor pads, two dimensional sensor array matrix, continuous force sensing strips or several other forms depending on the application. Pressure sensing mat is a dense aggregation of force sensing resistors forming a two dimensional sensor array matrix. Tekscan 5315 pressure mat consisting of 2016 force sensing resistors arranged in grid of 42 rows x 48 columns have been used for AME Floor-III design.The dimension of each pressure mat is approximately 62 cm x 53 cm with an active area of 48.8 cm x 42.7 cm .The sensor mat is rated at 30 pounds per square inch (PSI). There are 2016 sensors in an active area of 322.98 square inch giving sensor densities of about 6.25 sensors/square inch. Pressure sensing panel is constructed with eight such pressure sensing mats (Srinivasan, P., 2006). Eight Tekscan-5315 mats are arranged in 4 rows x 2 columns mounted on a wooden floor frame as shown in Fig. 1 (top right). Each pressure sensing mat has a non-sensing zone at the borders surrounding the active area. The pressure sensing mats are so laid and affixed on the floor panel in such a way that the active area of one mat overlaps the inactive area of another thereby avoiding such inactive zones (Srinivasan, P., 2006). Each pressure sensing mat has a connection tab where the pressure data of all the sensors collectively arrive. This connection tab passes through a slit on the front side of the panel and is back-folded to interface with hardware control board. Thus each panel has eight hardware control boards (one for each pressure sensing mat) mounted on the back side. AME Floor-III is constructed by assembling 12 such pressure sensing panels (explained above) in 3 x 4 panel matrix. Thus the entire floor consists of a total of 96 networked pressure sensing mats assembled in 12 rows x 8 columns as shown in Fig. 2 and spanning a total sensing area of 180 square feet (15 feet x 12 feet). Such a modular design ensures large sensing area while still maintaining smaller frames for ease of use and installation. Also modularity in design paves way for creation of floor of different shapes and sizes (walkways, dance floor) and easy reconfiguration to suit external environments. The related network architecture used in AME Floor-III is illustrated in Fig. 2. All the 96 pressure sensing units are assigned static IP addresses and they form a local private network. Each and every pressure sensing unit has an associated hardware control board with an ethernet interface. There are two layers of network switches as shown in the Fig. 2. Multiple switches in multiple layers are deployed to share the network load and ensure sufficient leeway so that network switches are not operating to its rated full capacity which in turn increases performance and life time. All the twelve pressure units in one column are connected to a single fast ethernet switch on the first layer by means of ethernet cables. In a similar fashion, all pressure sensing units in 8 columns communicate with the fast ethernet network switch of their respective columns. The output port of eight fast ethernet switches is wired to the gigabit switch on the second layer. The output of the gigabit switch communicates with the host computer running the floor control software viz. Floor Control and Visualization Engine (FCAVE). FCAVE collects the pressure data arriving from 96 different IP’s on 96 different ports and uses the source IP to identify and index the pressure data pertaining to different mats. The software further assembles all the 96 data packets (arriving from 96 mats) based on their location to create one large floor packet for each frame and sends it out to a multicast network. By this arrangement several ends users listening to the multicast network get access to the pressure data. The mechanical design and installation of AME Floor-III is implemented in three layers namely the sub floor framework, surface floor (shown in Fig 1) and marley layer. The sub floor framework forming the bottom most layer is constructed using long steel rails welded to form a grid like structure and mounted on wooden blocks. This layer serves as a raised pedestal for the entire floor giving an elevation of approximately 4 inches above ground and provides the required spring and resilience to prevent injuries due to user activity like falling, jumping etc. Also such a raised installation paves way for all the necessary interconnect, ethernet wiring, power distribution and cabling to be housed beneath the floor in a neat and coherent fashion. The surface floor is made of a solid wooden framework and made to rest on the sub-floor layer. This layer forms the solid rigid structure supporting the users on the floor system. The pressure sensing mats and the hardware control circuitry for data collection are affixed to the surface floor structure on the frontal and dorsal side respectively. The third and the topmost layer is sheet of marley which is a vinyl surface, covering the entire area of the floor. The marley serves two main purposes. Firstly it aids in protection of the sensor matrix which are easily susceptible to damage by sharp and pointed objects and thereby increasing the longevity of the sensors. Secondly, it provides the necessary friction and contact grip for the subjects thereby preventing slips and fall injuries. Marley surface is generally preferred over standard wood or tiled surface structures for better movement control and less slipperiness. The hardware control circuitry used in AME Floor–II (Srinivasan, P., 2006) has been retained in AME Floor –III but the microcontroller firmware has been optimized in AME Floor-III to achieve a higher frame rate. The floor hardware (Srinivasan, P., 2006) comprises of microcontroller, multiplexers, A/D converter and ethernet enabled rabbit controller which are all wired together on a hardware control board and collectively termed as ‘mat based controller’. The block diagram of the floor hardware (Srinivasan, P., 2006) is shown in Fig 3. The microcontroller (PIC18F6585) forms the heart of the mat-based controller which generates the timing and control signals for all the components on the hardware control board to coordinate and sequence their operation of scanning sensors and reading pressure values. It has programmable capabilities to synchronize the sensor scan based on an internal timer or from an external clock signal. The latter has been currently implemented whereby the scan of all 2016 sensors on a single mat are synchronized with the external clock from the motion capture system. This implementation paves way for temporal synchronization of AME Floor-III and motion capture system for multimodal sensing. At the onset of falling edge of the synchronization clock, the microcontroller initiates a sequential scanning process of 2016 sensors arranged in 42 x 48 matrix. The pressure sensors (force sensing resistors) indicate a change in resistance when pressure is applied. This change in resistance is converted to a proportional analog voltage by a simple resistor divider network. Signal multiplexing has been implemented using a bank of six CD74HC4067 16-to-1 multiplexers to read the pressure voltage signals. Three multiplexers are used for the row lines and three for the column lines of the sensor matrix and each input line of the multiplexer is wired to a single pressure sensor output. The microcontroller streams out the multiplexer selects signals in a sequence to read the pressure values from sensor 1 to sensor 2016 one ...
Context 2
... Also it showed preliminary multimodal integrable capabilities in temporal domain only and not spatial domain. To fully address these issues, we have developed an improved, ingenious and in- house pressure sensing floor system (AME Floor-III) described in this chapter and listed in the last row of Table 1. AME Floor-III system is characterized by large sensing area, higher frame rate, smaller latency, enhanced user friendliness, spatial and temporal integrability with motion capture system to create a multimodal environment, modular/scalable design thereby matching our ideal pressure sensing demands for real time movement based human computer interaction. Comparison with other systems reveals that our proposed system in this chapter ranks among the top three in most of the dimensions of the performance criteria. Although there are four systems with frame rates higher than ours, the sensing area and sensor resolutions of these systems are much lower than our system. This chapter is an extension of our previous paper (Rangarajan, et al, 2007a) based on (Rangarajan, 2007b). This section provides essential information on pressure sensors, modular design approach used in building the large area pressure sensing floor. Later this section dives in deeper to explain the specifics of the embedded floor hardware and floor control software. Floor control hardware used in AME Floor-II (Srinivasan et al., 2005) has been retained in AME Floor-III but however the microcontroller firmware has been optimized to achieve high frame rate and reduced latency. Hardware overview given in this section creates a solid foundation to explain the optimization techniques in section 4. Force sensing resistors have been used as individual sensor entities for AME Floor-III system. They are made up of pressure sensitive polymer between conductive traces on sheets of Mylar. As the name implies, these sensors exhibit a change in resistance when pressure or force is applied on them. The value of resistance is of the order of mega ohms under no pressure and drops to few kilo ohms when pressure is applied. Each pressure sensor element has an approximate sensing area of 6 mm x 6 mm and measure 10 mm x 10 mm including the non-sensing area. Such a small size paves way for dense aggregation of sensors in the sensing space thereby resulting in higher sensor densities. It is important to note that the force sensing resistors does not give very accurate measurements of pressure or force applied as there may be 15% to 20% variation between each other. Also they suffer from a property called creep or drift where the measured resistance values tend to slowly vary when subjected to constant pressure over a long period of time thereby inducing an error in pressure measurements. However force sensing resistors can be used very effectively for relative pressure measurements and acquiring pressure distribution data which serves the purpose of wide variety of applications such as medicine for diagnosis of various gait pathologies, automotive, robotics and interactive arts applications. Force sensing resistors are generally available in several shapes and sizes like sensor pads, two dimensional sensor array matrix, continuous force sensing strips or several other forms depending on the application. Pressure sensing mat is a dense aggregation of force sensing resistors forming a two dimensional sensor array matrix. Tekscan 5315 pressure mat consisting of 2016 force sensing resistors arranged in grid of 42 rows x 48 columns have been used for AME Floor-III design.The dimension of each pressure mat is approximately 62 cm x 53 cm with an active area of 48.8 cm x 42.7 cm .The sensor mat is rated at 30 pounds per square inch (PSI). There are 2016 sensors in an active area of 322.98 square inch giving sensor densities of about 6.25 sensors/square inch. Pressure sensing panel is constructed with eight such pressure sensing mats (Srinivasan, P., 2006). Eight Tekscan-5315 mats are arranged in 4 rows x 2 columns mounted on a wooden floor frame as shown in Fig. 1 (top right). Each pressure sensing mat has a non-sensing zone at the borders surrounding the active area. The pressure sensing mats are so laid and affixed on the floor panel in such a way that the active area of one mat overlaps the inactive area of another thereby avoiding such inactive zones (Srinivasan, P., 2006). Each pressure sensing mat has a connection tab where the pressure data of all the sensors collectively arrive. This connection tab passes through a slit on the front side of the panel and is back-folded to interface with hardware control board. Thus each panel has eight hardware control boards (one for each pressure sensing mat) mounted on the back side. AME Floor-III is constructed by assembling 12 such pressure sensing panels (explained above) in 3 x 4 panel matrix. Thus the entire floor consists of a total of 96 networked pressure sensing mats assembled in 12 rows x 8 columns as shown in Fig. 2 and spanning a total sensing area of 180 square feet (15 feet x 12 feet). Such a modular design ensures large sensing area while still maintaining smaller frames for ease of use and installation. Also modularity in design paves way for creation of floor of different shapes and sizes (walkways, dance floor) and easy reconfiguration to suit external environments. The related network architecture used in AME Floor-III is illustrated in Fig. 2. All the 96 pressure sensing units are assigned static IP addresses and they form a local private network. Each and every pressure sensing unit has an associated hardware control board with an ethernet interface. There are two layers of network switches as shown in the Fig. 2. Multiple switches in multiple layers are deployed to share the network load and ensure sufficient leeway so that network switches are not operating to its rated full capacity which in turn increases performance and life time. All the twelve pressure units in one column are connected to a single fast ethernet switch on the first layer by means of ethernet cables. In a similar fashion, all pressure sensing units in 8 columns communicate with the fast ethernet network switch of their respective columns. The output port of eight fast ethernet switches is wired to the gigabit switch on the second layer. The output of the gigabit switch communicates with the host computer running the floor control software viz. Floor Control and Visualization Engine (FCAVE). FCAVE collects the pressure data arriving from 96 different IP’s on 96 different ports and uses the source IP to identify and index the pressure data pertaining to different mats. The software further assembles all the 96 data packets (arriving from 96 mats) based on their location to create one large floor packet for each frame and sends it out to a multicast network. By this arrangement several ends users listening to the multicast network get access to the pressure data. The mechanical design and installation of AME Floor-III is implemented in three layers namely the sub floor framework, surface floor (shown in Fig 1) and marley layer. The sub floor framework forming the bottom most layer is constructed using long steel rails welded to form a grid like structure and mounted on wooden blocks. This layer serves as a raised pedestal for the entire floor giving an elevation of approximately 4 inches above ground and provides the required spring and resilience to prevent injuries due to user activity like falling, jumping etc. Also such a raised installation paves way for all the necessary interconnect, ethernet wiring, power distribution and cabling to be housed beneath the floor in a neat and coherent fashion. The surface floor is made of a solid wooden framework and made to rest on the sub-floor layer. This layer forms the solid rigid structure supporting the users on the floor system. The pressure sensing mats and the hardware control circuitry for data collection are affixed to the surface floor structure on the frontal and dorsal side respectively. The third and the topmost layer is sheet of marley which is a vinyl surface, covering the entire area of the floor. The marley serves two main purposes. Firstly it aids in protection of the sensor matrix which are easily susceptible to damage by sharp and pointed objects and thereby increasing the longevity of the sensors. Secondly, it provides the necessary friction and contact grip for the subjects thereby preventing slips and fall injuries. Marley surface is generally preferred over standard wood or tiled surface structures for better movement control and less slipperiness. The hardware control circuitry used in AME Floor–II (Srinivasan, P., 2006) has been retained in AME Floor –III but the microcontroller firmware has been optimized in AME Floor-III to achieve a higher frame rate. The floor hardware (Srinivasan, P., 2006) comprises of microcontroller, multiplexers, A/D converter and ethernet enabled rabbit controller which are all wired together on a hardware control board and collectively termed as ‘mat based controller’. The block diagram of the floor hardware (Srinivasan, P., 2006) is shown in Fig 3. The microcontroller (PIC18F6585) forms the heart of the mat-based controller which generates the timing and control signals for all the components on the hardware control board to coordinate and sequence their operation of scanning sensors and reading pressure values. It has programmable capabilities to synchronize the sensor scan based on an internal timer or from an external clock signal. The latter has been currently implemented whereby the scan of all 2016 sensors on a single mat are synchronized with the external clock from the motion capture system. This implementation paves way for temporal synchronization of AME Floor-III and motion capture system for multimodal sensing. At the onset of falling edge of the synchronization clock, the microcontroller initiates a sequential scanning ...
Context 3
... and temporal integrability with motion capture system to create a multimodal environment, modular/scalable design thereby matching our ideal pressure sensing demands for real time movement based human computer interaction. Comparison with other systems reveals that our proposed system in this chapter ranks among the top three in most of the dimensions of the performance criteria. Although there are four systems with frame rates higher than ours, the sensing area and sensor resolutions of these systems are much lower than our system. This chapter is an extension of our previous paper (Rangarajan, et al, 2007a) based on (Rangarajan, 2007b). This section provides essential information on pressure sensors, modular design approach used in building the large area pressure sensing floor. Later this section dives in deeper to explain the specifics of the embedded floor hardware and floor control software. Floor control hardware used in AME Floor-II (Srinivasan et al., 2005) has been retained in AME Floor-III but however the microcontroller firmware has been optimized to achieve high frame rate and reduced latency. Hardware overview given in this section creates a solid foundation to explain the optimization techniques in section 4. Force sensing resistors have been used as individual sensor entities for AME Floor-III system. They are made up of pressure sensitive polymer between conductive traces on sheets of Mylar. As the name implies, these sensors exhibit a change in resistance when pressure or force is applied on them. The value of resistance is of the order of mega ohms under no pressure and drops to few kilo ohms when pressure is applied. Each pressure sensor element has an approximate sensing area of 6 mm x 6 mm and measure 10 mm x 10 mm including the non-sensing area. Such a small size paves way for dense aggregation of sensors in the sensing space thereby resulting in higher sensor densities. It is important to note that the force sensing resistors does not give very accurate measurements of pressure or force applied as there may be 15% to 20% variation between each other. Also they suffer from a property called creep or drift where the measured resistance values tend to slowly vary when subjected to constant pressure over a long period of time thereby inducing an error in pressure measurements. However force sensing resistors can be used very effectively for relative pressure measurements and acquiring pressure distribution data which serves the purpose of wide variety of applications such as medicine for diagnosis of various gait pathologies, automotive, robotics and interactive arts applications. Force sensing resistors are generally available in several shapes and sizes like sensor pads, two dimensional sensor array matrix, continuous force sensing strips or several other forms depending on the application. Pressure sensing mat is a dense aggregation of force sensing resistors forming a two dimensional sensor array matrix. Tekscan 5315 pressure mat consisting of 2016 force sensing resistors arranged in grid of 42 rows x 48 columns have been used for AME Floor-III design.The dimension of each pressure mat is approximately 62 cm x 53 cm with an active area of 48.8 cm x 42.7 cm .The sensor mat is rated at 30 pounds per square inch (PSI). There are 2016 sensors in an active area of 322.98 square inch giving sensor densities of about 6.25 sensors/square inch. Pressure sensing panel is constructed with eight such pressure sensing mats (Srinivasan, P., 2006). Eight Tekscan-5315 mats are arranged in 4 rows x 2 columns mounted on a wooden floor frame as shown in Fig. 1 (top right). Each pressure sensing mat has a non-sensing zone at the borders surrounding the active area. The pressure sensing mats are so laid and affixed on the floor panel in such a way that the active area of one mat overlaps the inactive area of another thereby avoiding such inactive zones (Srinivasan, P., 2006). Each pressure sensing mat has a connection tab where the pressure data of all the sensors collectively arrive. This connection tab passes through a slit on the front side of the panel and is back-folded to interface with hardware control board. Thus each panel has eight hardware control boards (one for each pressure sensing mat) mounted on the back side. AME Floor-III is constructed by assembling 12 such pressure sensing panels (explained above) in 3 x 4 panel matrix. Thus the entire floor consists of a total of 96 networked pressure sensing mats assembled in 12 rows x 8 columns as shown in Fig. 2 and spanning a total sensing area of 180 square feet (15 feet x 12 feet). Such a modular design ensures large sensing area while still maintaining smaller frames for ease of use and installation. Also modularity in design paves way for creation of floor of different shapes and sizes (walkways, dance floor) and easy reconfiguration to suit external environments. The related network architecture used in AME Floor-III is illustrated in Fig. 2. All the 96 pressure sensing units are assigned static IP addresses and they form a local private network. Each and every pressure sensing unit has an associated hardware control board with an ethernet interface. There are two layers of network switches as shown in the Fig. 2. Multiple switches in multiple layers are deployed to share the network load and ensure sufficient leeway so that network switches are not operating to its rated full capacity which in turn increases performance and life time. All the twelve pressure units in one column are connected to a single fast ethernet switch on the first layer by means of ethernet cables. In a similar fashion, all pressure sensing units in 8 columns communicate with the fast ethernet network switch of their respective columns. The output port of eight fast ethernet switches is wired to the gigabit switch on the second layer. The output of the gigabit switch communicates with the host computer running the floor control software viz. Floor Control and Visualization Engine (FCAVE). FCAVE collects the pressure data arriving from 96 different IP’s on 96 different ports and uses the source IP to identify and index the pressure data pertaining to different mats. The software further assembles all the 96 data packets (arriving from 96 mats) based on their location to create one large floor packet for each frame and sends it out to a multicast network. By this arrangement several ends users listening to the multicast network get access to the pressure data. The mechanical design and installation of AME Floor-III is implemented in three layers namely the sub floor framework, surface floor (shown in Fig 1) and marley layer. The sub floor framework forming the bottom most layer is constructed using long steel rails welded to form a grid like structure and mounted on wooden blocks. This layer serves as a raised pedestal for the entire floor giving an elevation of approximately 4 inches above ground and provides the required spring and resilience to prevent injuries due to user activity like falling, jumping etc. Also such a raised installation paves way for all the necessary interconnect, ethernet wiring, power distribution and cabling to be housed beneath the floor in a neat and coherent fashion. The surface floor is made of a solid wooden framework and made to rest on the sub-floor layer. This layer forms the solid rigid structure supporting the users on the floor system. The pressure sensing mats and the hardware control circuitry for data collection are affixed to the surface floor structure on the frontal and dorsal side respectively. The third and the topmost layer is sheet of marley which is a vinyl surface, covering the entire area of the floor. The marley serves two main purposes. Firstly it aids in protection of the sensor matrix which are easily susceptible to damage by sharp and pointed objects and thereby increasing the longevity of the sensors. Secondly, it provides the necessary friction and contact grip for the subjects thereby preventing slips and fall injuries. Marley surface is generally preferred over standard wood or tiled surface structures for better movement control and less slipperiness. The hardware control circuitry used in AME Floor–II (Srinivasan, P., 2006) has been retained in AME Floor –III but the microcontroller firmware has been optimized in AME Floor-III to achieve a higher frame rate. The floor hardware (Srinivasan, P., 2006) comprises of microcontroller, multiplexers, A/D converter and ethernet enabled rabbit controller which are all wired together on a hardware control board and collectively termed as ‘mat based controller’. The block diagram of the floor hardware (Srinivasan, P., 2006) is shown in Fig 3. The microcontroller (PIC18F6585) forms the heart of the mat-based controller which generates the timing and control signals for all the components on the hardware control board to coordinate and sequence their operation of scanning sensors and reading pressure values. It has programmable capabilities to synchronize the sensor scan based on an internal timer or from an external clock signal. The latter has been currently implemented whereby the scan of all 2016 sensors on a single mat are synchronized with the external clock from the motion capture system. This implementation paves way for temporal synchronization of AME Floor-III and motion capture system for multimodal sensing. At the onset of falling edge of the synchronization clock, the microcontroller initiates a sequential scanning process of 2016 sensors arranged in 42 x 48 matrix. The pressure sensors (force sensing resistors) indicate a change in resistance when pressure is applied. This change in resistance is converted to a proportional analog voltage by a simple resistor divider network. Signal multiplexing has been implemented using a bank of six CD74HC4067 16-to-1 multiplexers to read the pressure voltage signals. Three multiplexers are used for the row lines ...

Similar publications

Conference Paper
Full-text available
Human computer interaction techniques using hand poses are more natural to users than those that rely on devices. In this paper we describe and evaluate two techniques for hand pose recognition, based on a general library for gesture recognition, called CALI. This library was initially designed for calligraphic gesture recognition, however its usag...
Article
Full-text available
Hand tracking is one of the essential elements in vision based hand gesture recognition system. The tracked hand image can provide a meaningful gesture for more natural ways of Human Computer Interaction (HCI) systems. In this paper, we present a fast hand tracking method based on the fusion of skin and motion features incorporated covariance matri...
Article
Full-text available
Static hand gesture recognition is an interesting and challenging problem in computer vision. It is considered a significant component of Human Computer Interaction and it has attracted many research efforts from the computer vision community in recent decades for its high potential applications, such as game interaction and sign language recogniti...
Article
Full-text available
This work targets real-time recognition of both static hand-poses and dynamic hand-gestures in a unified open-source framework. The developed solution enables natural and intuitive hand-pose recognition of American Sign Language (ASL), extending the recognition to ambiguous letters not challenged by previous work. While hand-pose recognition exploi...
Article
Full-text available
One challenging research problem of hand pose recognition is the accurate detection of finger abduction and flexion with a single camera. The detection of flexion movements from a 2D image is difficult, because it involves estimation of finger movements along the optical axis of the camera (z direction). In this paper, a novel approach to hand pose...

Citations

... A pressure sensing matrix equipped bed can recognize onbed rehabilitation exercises or monitor sleep posture and stage [12] [13] [14]. Different kinds of pressure sensitive floors have been used for indoor positioning [15] [16], gait and person identification [17] [18] [19] and human computer interaction [20] [21]. Similar to our own previous research, these works focus on creating or enhancing concrete hardware design, on creating data processing algorithms for specific applications. ...
Conference Paper
Full-text available
Based on a series of projects with textile pressure mapping matrix (TPM) for ubiquitous and wearable activity recognition in various scenarios, we have accumulated the knowledge and experience to develop an open-access hardware and software framework, which enables a broader education and allows the scientific community to build their own TPM applications. The hardware framework includes all the necessary resources to manufacture the sensing equipment and instructions to build the fabric sensors for an up to 32×32 TPM. The software framework 'Textile-Sandbox' contains ready-to-use tools and modules that support both running experiments and data mining. The framework is evaluated with 10 master students working in 4 groups. 4 applications are developed from scratch and validated within only 40 hours. We present this framework and the evaluated applications in this paper.
... One component of this surveillance is biometric person identification using audio and video data; see, e.g., a recent book summarizing research and development in the field of person identification (Remagnano, Jones, Paragios, & Regazzoni, 2002) and the article by Hua and Tan (2006). Much of this work comes from information engineering and involves machine analysis of behavioral form, e.g., Rangarajan, Kidane, Qian, and Rajko (2008) on the development of a pressure sensing floor for studying human gait patterns to identify individuals. ...
Article
Full-text available
This article discusses the origins of video‐based approaches to social research and their continuation up to the present moment. It begins by considering early studies employing silent cinema film and audio recording, followed by the unification of audio and visual recording in sound cinema film. Special emphasis is placed on the perspectives and methods initiated by the ‘Natural History of an Interview’ research group; the first systematic study of verbal and nonverbal behavior together, as these occur in immediate social interaction in face‐to‐face encounters. The discussion then continues autobiographically as I recount my own early research experience of the development of video‐based research approaches. This is followed by an overview of current work to show the wide range of contemporary research that uses video. The article concludes with a few speculations concerning likely futures for video‐based approaches in social research.
... The pressure sensing floor system [14,15] we use for people recognition features a modularized design and it consists of 96 networked pressure sensing mat modules. Each mat module contains a pressure sensing mat (Tekscan 5315) to measure the applied pressure, and peripheral elements such as a microcontroller, an Ethernet controller, and customized supporting circuitry for data collection and communication. ...
... To allow for multimodal movement data collection, the pressure sensing floor is synchronized with marker-based motion capture system and video camera array through shared external clock. More details about the pressure sensing floor can be found in [15]. ...
Article
Full-text available
This paper presents an approach to people identification based on gait using floor pressure data. By using a large-area, high-resolution pressure sensing floor, we are able to obtain both the 1D pressure profile and 2D position trajectories of the centers of pressure (COP) of both feet to form a 3D COP trajectories over a footstep. From the 3D COP trajectories of a pair of footsteps, a set of features are extracted and used together with other features such as the mean pressure and stride length for people identification. The Fisher linear discriminant is used as the classifier. The speed-invariant properties of different features are examined and we have shown that the pressure features have good speed-invariance properties, much better than the stride length feature. The proposed algorithm has been extensively tested using a floor pressure dataset collected from 11 subjects in different walking styles, including varying speed walking and free style walking. Decent people identification results have been obtained using the proposed method with an average recognition rate of 92.3% and false alarm rate of 6.79% using the best performing feature set.
... To address this issue, in this paper we present a gait-based people identification method using foot pressure measured by a pressure sensing floor. The pressure sensing floor system [14] we use consists of a number of pressure sensing mats arranged in a rectangular shape spanning a total sensing area of over 150 square feet. Each pressure sensing mat has over 2000 force sensing resistor (FSR) based sensors in a resolution of over 6 sensors per square inch. ...
Conference Paper
Full-text available
This paper presents an approach to people identification using gait based on floor pressure data. By using a large area high resolution pressure sensing floor, we were able to obtain 3D trajectories of the center of foot pressures over a footstep which contain both the 1D pressure profile and 2D position trajectories of the COP. Based on the 3D COP trajectories a set of features are then extracted and used for people identification together with other features such as stride length and cadence. The Fisher linear discriminant is used as the classifier. Encouraging results have been obtained using the proposed method with an average recognition rate of 94% and false alarm rate of 3% using pair-wise footstep data from 10 subjects.
Article
Full-text available
ABSTRAK Kebutuhan sistem otomasi untuk pekerjaan tentu sangat dituntut untuk menjadi lebih efektif dan efisien seperti halnya pemanfaatan PLC dalam bidang industri untuk menjalankan segala aktifitas menjadi otomatis, terkadang sistem ADC (analog to digital converter) pada PLC itu terbatas, dan harus diberi tambahan ekstensi eksternal yang dijual terpisah di masing-masing vendor. Tentunya harganya juga terkadang lebih mahal dari pada Unit pemrosesnya, hal ini yang sering menjadi sebuah pertimbangan. Contoh nya sistem ADC pada PLC CP1L-E memiliki 2 kanal. Oleh karena itu penelitian ini dilakukan, dengan melakukan perancangan multiplekser dan demultiplekser analog dengan memanfaatkan IC 74HC4067, hasil dari penelitian ini dalam 1 kanal input analog PLC CP1L-E dapat menjadi 16 kanal input dengan waktu pensaklaran direkomendasikan diatas 0,1detik / kanal berdasarkan hasil selisih pembacaan nilai ADC dibandingkan dengan tanpa melalui multiplekser berkisar antara 0,00% sampai 1,969%, dan multiplekser ini direkomendasikan untuk penggunaan sinyal input pada tegangan 0 sampai 5 volt. Kata kunci: ADC, Multiplekser,Demultiplekser, IC CD74HC4067, PLC ABSTRACT The need for automation systems for work is certainly highly demanded to be more effective and efficient as well as the use of PLCs in the industrial sector to carry out all activities automatically, sometimes the ADC (analog to digital converter) system on the PLC is limited, and must be given additional external extensions that are sold separately for each vendor. Of course the price is also sometimes more expensive than the processing unit, this is often a consideration. For example, the ADC system on the CP1L-E PLC has 2 channels. Therefore, this research was carried out, by designing an analog multiplexer and demultiplexer using IC 74HC4067, the results of this study in 1 analog input channel PLC CP1L-E can be 16 input channels with recommended switching times above 0.1 seconds / channel based on the results of the difference. The reading of the ADC value compared to without going through the multiplexer ranges from 0.00% to 1.969%, and this multiplexer is recommended for the use of input signals at a voltage of 0 to 5 volts. Keywords: ADC, Multiplexer, Demultiplexer, IC CD74HC4067, PLC
Article
Smart systems are commonly used in our environment and satisfy numerous applications for the end user. However, the need for unobtrusive systems is constantly growing as we are living in a world where such systems are more common place and pervasive than ever. More specifically in the field of smart flooring systems, being subtle and unobtrusive is key as people come into intimate contact with these systems. The smart flooring system that has been developed is reliable, persistent, and completely transparent to the user, therefore making it ideal for many applications including safety, intelligent surveillance, patient monitoring, injury prevention, asset tracking, and entertainment. The work presented herein reports a novel approach to identify a footstep pattern from a single sensor area. Signals are processed according to a normalization calculation process and correlated with signal references through the use of a single piezoelectric sensor. Several correlation methodologies were performed by comparing an incoming signal with a signal reference to generate coefficients. These coefficients can be thought of as similarity indicators and have allowed us to distinguish between events, such as human footsteps among other events with 100% accuracy.
Article
Today, walking trajectory analysis or event detection gained a lot of interest in healthcare environments to prevent pathologies or gait deviations. However, to correctly study the gait of someone is difficult since it generally requires expensive systems that are difficult to implement. In the work presented herein, we propose another approach to retrieve information from a sensor area. As usual gait analysis systems comprise numerous sensors and provide spatial pressure resolution maps of footsteps over a small area; our system gives a signature generated by a single piezoelectric sensor only. The signal delivered by the sensor goes through a normalization calculation process giving a signal which can be compared to a reference signal. A Pearson product-moment correlation coefficient (PPMCC) is determined between the two signals giving a shape similarity indicator. We achieved similarity indicators greater than 95%. It is the first time that this correlation is applied in the field of human step detection.
Conference Paper
This paper presents a multimodal gesture recognition framework using video and floor pressure data. The key contribution of this research is to show that using additional floor pressure data significantly improves the recognition of visually ambiguous gestures. To effectively combine gesture recognition results from both the visual and pressure sensing modalities, we have adopted a two-stage cascaded sequential information integration scheme. In Stage-1 of the scheme, an unknown movement segment is first classified into a gesture group based on the visual features, and then in Stage-2, the input movement is further recognized as a gesture within the gesture group according to the pressure features. In the proposed framework, the hidden Markov models (HMMs) are used to model and recognize gestures using features from video and pressure data. The experimental results obtained on an in-house video and floor pressure gesture dataset demonstrate the efficacy of the proposed multimodal gesture recognition framework.