FIG 5 - uploaded by Robert M. Kirby
Content may be subject to copyright.
Flood contour of the mean of the solution with covariance icons due to uniform variation of the lower boundary height. Top: Icons generated using = 0.01; Bottom: Icons generated using = 0.1. Note that icons are omitted if the -ball needed for their generation does not lie completely within the computational domain.  

Flood contour of the mean of the solution with covariance icons due to uniform variation of the lower boundary height. Top: Icons generated using = 0.01; Bottom: Icons generated using = 0.1. Note that icons are omitted if the -ball needed for their generation does not lie completely within the computational domain.  

Source publication
Article
Full-text available
We present a numerical technique to visualize covariance and cross-covariance fields of a stochastic simulation. The method is local in the sense that it demonstrates the covariance structure of the solution at a point with its neighboring locations. When coupled with an efficient stochastic simulation solver, our framework allows one to effectivel...

Similar publications

Chapter
Full-text available
Petri nets are an established model of concurrency. A Petri net is terminating if for every initial marking there is a uniform bound on the length of all possible runs. Recent work on the termination of Petri nets suggests that, in general, practical models should terminate fast, i.e. in polynomial time. In this paper we focus on the termination of...

Citations

Article
Visualizing correlations, i.e., the tendency of uncertain data values at different spatial positions to change contrarily or according to each other, allows inferring on the possible variations of structures in the data. Visualizing global correlation structures, however, is extremely challenging, since it is not clear how the visualization of complicated long-range dependencies can be integrated into standard visualizations of spatial data. Furthermore, storing correlation information imposes a memory requirement that is quadratic in the number of spatial sample positions. This paper presents a novel approach for visualizing both positive and inverse global correlation structures in uncertain 2D scalar fields, where the uncertainty is modeled via a multivariate Gaussian distribution. We introduce a new measure for the degree of dependency of a random variable on its local and global surroundings, and we propose a spatial clustering approach based on this measure to classify regions of a particular correlation strength. The clustering performs a correlation filtering, which results in a representation that is only linear in the number of spatial sample points. Via cluster coloring the correlation information can be embedded into visualizations of other statistical quantities, such as the mean and the standard deviation. We finally propose a hierarchical cluster subdivision scheme to further allow for the simultaneous visualization of local and global correlations. © 2012 Wiley Periodicals, Inc.
Article
In uncertain scalar fields where data values vary with a certain probability, the strength of this variability indicates the confidence in the data. It does not, however, allow inferring on the effect of uncertainty on differential quantities such as the gradient, which depend on the variability of the rate of change of the data. Analyzing the variability of gradients is nonetheless more complicated, since, unlike scalars, gradients vary in both strength and direction. This requires initially the mathematical derivation of their respective value ranges, and then the development of effective analysis techniques for these ranges. This paper takes a first step into this direction: Based on the stochastic modeling of uncertainty via multivariate random variables, we start by deriving uncertainty parameters, such as the mean and the covariance matrix, for gradients in uncertain discrete scalar fields. We do not make any assumption about the distribution of the random variables. Then, for the first time to our best knowledge, we develop a mathematical framework for computing confidence intervals for both the gradient orientation and the strength of the derivative in any prescribed direction, for instance, the mean gradient direction. While this framework generalizes to 3D uncertain scalar fields, we concentrate on the visualization of the resulting intervals in 2D fields. We propose a novel color diffusion scheme to visualize both the absolute variability of the derivative strength and its magnitude relative to the mean values. A special family of circular glyphs is introduced to convey the uncertainty in gradient orientation. For a number of synthetic and real-world data sets, we demonstrate the use of our approach for analyzing the stability of certain features in uncertain 2D scalar fields, with respect to both local derivatives and feature orientation.