Figure - available from: Molecular Biology Reports
This content is subject to copyright. Terms and conditions apply.
Factors affecting codon usage bias.
Major factors affecting codon usage bias in organisms such as GC content of genome, population size, gene expression level, protein length, codon position and context, tRNA abundance and interactions and mRNA structure are diagrammatically indicated. tRNA interactions are classified into frequency bias, co-occurence bias and pair bias. E, P and A indicate exit, peptide and amino acid sites in the ribosomes. The tRNA interactions were modified and redrawn from [1]

Factors affecting codon usage bias. Major factors affecting codon usage bias in organisms such as GC content of genome, population size, gene expression level, protein length, codon position and context, tRNA abundance and interactions and mRNA structure are diagrammatically indicated. tRNA interactions are classified into frequency bias, co-occurence bias and pair bias. E, P and A indicate exit, peptide and amino acid sites in the ribosomes. The tRNA interactions were modified and redrawn from [1]

Source publication
Article
Full-text available
Codon usage bias is the preferential or non-random use of synonymous codons, a ubiquitous phenomenon observed in bacteria, plants and animals. Different species have consistent and characteristic codon biases. Codon bias varies not only with species, family or group within kingdom, but also between the genes within an organism. Codon usage bias has...

Similar publications

Article
Full-text available
Amino acid sequences of proteins are encoded in nucleic acids composed of four letters, A, G, C, and T(U). However, this four-letter alphabet coding system limits further functionalities of proteins by the twenty letters of amino acids. If we expand the genetic code or develop alternative codes, we could create novel biological systems and biotechn...
Article
Full-text available
Metazoan organisms have many tRNA genes responsible for decoding amino acids. The set of all tRNA genes can be grouped in sets of common amino acids and isoacceptor tRNAs that are aminoacylated by corresponding aminoacyl-tRNA synthetases. Analysis of tRNA alignments shows that, despite the high number of tRNA genes, specific tRNA sequence motifs ar...
Article
Full-text available
RNase2 is the member of the RNaseA family most abundant in macrophages. Here, we knocked out RNase2 in THP-1 cells and analysed the response to Respiratory Syncytial Virus (RSV). RSV induced RNase2 expression, which significantly enhanced cell survival. Next, by cP-RNAseq sequencing, which amplifies the cyclic-phosphate endonuclease products, we an...
Article
Full-text available
The chloroplast is a promising platform for biotechnological innovation due to its compact translation machinery. Nucleotide modifications within a minimal set of tRNAs modulate codon–anticodon interactions that are crucial for translation efficiency. However, a comprehensive assessment of these modifications does not presently exist in chloroplast...
Article
Full-text available
Posttranscriptional tRNA modifications are essential for proper gene expression, and defects in the enzymes that perform tRNA modifications are associated with numerous human disorders. Throughout eukaryotes, 2'-O-methylation of residues 32 and 34 of the anticodon loop of tRNA is important for proper translation, and in humans, a lack of these modi...

Citations

... These structural features are also highly conserved across vertebrate taxa (including Aves) [15,18,57,58]. Homogeneity in the patterns of codon, amino acid, and RSCU usage in the mitogenomes of C. japonica and C. coturnix suggests identical translational efficiency of PCGs and highly similar evolutionary pressures acting on them [59]. ...
Article
Full-text available
The Old-World quails, Coturnix coturnix (common quail) and Coturnix japonica (Japanese quail), are morphologically similar yet occupy distinct geographic ranges. This study aimed to elucidate their evolutionary trajectory and ancestral distribution patterns through a thorough analysis of their mitochondrial genomes. Mitogenomic analysis revealed high structural conservation, identical translational mechanisms, and similar evolutionary pressures in both species. Selection analysis revealed significant evidence of positive selection across the Coturnix lineage for the nad4 gene tree owing to environmental changes and acclimatization requirements during its evolutionary history. Divergence time estimations imply that diversification among Coturnix species occurred in the mid-Miocene (13.89 Ma), and their current distributions were primarily shaped by dispersal rather than global vicariance events. Phylogenetic analysis indicates a close relationship between C. coturnix and C. japonica, with divergence estimated at 2.25 Ma during the Pleistocene epoch. Ancestral range reconstructions indicate that the ancestors of the Coturnix clade were distributed over the Oriental region. C. coturnix subsequently dispersed to Eurasia and Africa, and C. japonica to eastern Asia. We hypothesize that the current geographic distributions of C. coturnix and C. japonica result from their unique dispersal strategies, developed to evade interspecific territoriality and influenced by the Tibetan Plateau’s geographic constraints. This study advances our understanding of the biogeographic and evolutionary processes leading to the diversification of C. coturnix and C. japonica, laying important groundwork for further research on this genus.
... The analysis of protein-coding genes in B. taurus revealed a pattern of codon usage reflecting the typical bias observed in various organisms such as different Bos species [30,35], stemming from a combination of evolutionary and biological factors [37]. The convergence of these codon usage patterns suggests the influence of lineage-specific factors, including translational selection, tRNA availability, and protein structure, as highlighted in previous studies [38,39]. ...
Article
Full-text available
The mitochondrial genome of Pumpo (Bos taurus), a prominent breed contributing to livestock farming, was sequenced using the Illumina HiSeq 2500 platform. Assembly and annotation of the mitochondrial genome were achieved through a multifaceted approach employing bioinformatics tools such as Trim Galore, SPAdes, and Geseq, followed by meticulous manual inspection. Additionally, analyses covering tRNA secondary structure and codon usage bias were conducted for comprehensive characterization. The 16,341 base pair mitochondrial genome comprises 13 protein-coding genes, 22 tRNA genes, and 2 rRNA genes. Phylogenetic analysis places Pumpo within a clade predominantly composed of European cattle, reflecting its prevalence in Europe. This comprehensive study underscores the importance of mitochondrial genome analysis in understanding cattle evolution and highlights the potential of genetic improvement programs in livestock farming, thus contributing to enhanced livestock practices.
... The analysis of protein-coding genes in B. taurus revealed a pattern of codon usage reflecting the typical bias observed in various organisms such as different Bos species [30,35], stemming from a combination of evolutionary and biological factors [37]. The convergence of these codon usage patterns suggests the influence of lineage-specific factors, including translational selection, tRNA availability, and protein structure, as highlighted in previous studies [38,39]. ...
Article
Full-text available
The mitochondrial genome of Pumpo (Bos taurus), a prominent breed contributing to livestock farming, was sequenced using the Illumina HiSeq 2500 platform. Assembly and annotation of the mitochondrial genome were achieved through a multifaceted approach employing bioinformatics tools such as Trim Galore, SPAdes, and Geseq, followed by meticulous manual inspection. Additionally, analyses covering tRNA secondary structure and codon usage bias were conducted for comprehensive characterization. The 16,341 base pair mitochondrial genome comprises 13 protein-coding genes, 22 tRNA genes, and 2 rRNA genes. Phylogenetic analysis places Pumpo within a clade predominantly composed of European cattle, reflecting its prevalence in Europe. This comprehensive study underscores the importance of mitochondrial genome analysis in understanding cattle evolution and highlights the potential of genetic improvement programs in livestock farming, thus contributing to enhanced livestock practices.
... Codon usage bias is a widespread phenomenon across species and among functionally related genes and within a single gene [70,71]. Extensive research has been performed on codon usage bias in many plant groups, such as Rosales species [72] and Epimedium [73]. ...
Article
Full-text available
Sinojackia Hu. comprises five to eight Chinese endemic species with high ornamental and medicinal value. However, the generic limits, interspecific relationships and evolutionary history of the genus remain unresolved. In this study, we newly sequenced three plastomes of S. oblongicarpa and compared them with those of the other congeneric species to explore the taxonomic delimitation of the species and the evolutionary history of the genus. The plastome structure of Sinojackia species was extremely conserved in terms of number of genes, sequence length, and GC content. The codon usage patterns revealed that natural selection may be the main factor shaping codon usage bias. Our phylogenetic tree shows that Sinojackia is monophyletic and can be divided into two clades. Sinojackia oblongicarpa as a distinct species is supported for it is distantly related to S. sarcocarpa. The evolutionary analysis of morphological features indicates that the woody mesocarp is an ancestral feature. Sinojackia originated in central Southeast China during the early Miocene. In this period, it experienced elevated diversification and migrated from central Southeast China to the Hunan Province and the Sichuan Province with the development of the Asian monsoon and East Asian flora. Glacial–interglacial interactions with the monsoon climate may provide favorable expansion conditions for Sinojackia on a small scale.
... Codon usage bias is a widespread phenomenon across species and among functionally related genes and within a single gene [70,71]. Extensive researches have been performed on codon usage bias in many plant groups, such as Rosales species [72] and Epimedium [73]. ...
Preprint
Full-text available
Sinojackia Hu. comprises five to eight Chinese endemic species with high ornamental and medicinal value. However, the generic limits, interspecific relationships and evolutionary history of the genus remain unresolved. In this study, we newly sequenced and assembled three plastomes of S. oblongicarpa and compared them with those of the other congeneric species to explore the taxonomic delimitation of the species and the evolutionary history of the genus. Plastomes structure of Sinojackia species were extremely conserved in terms of number of genes, sequence length and GC content. Codon usage patterns revealed that natural selection may be the main factor shaping codon usage bias. Our phylogenetic tree shows that Sinojackia is monophyletic and can be divided into two clades. Sinojackia oblongicarpa as a distinct species is supported for it is distantly related to S. sarcocarpa. The evolutionary analysis of morphological features indicates that woody mesocarp is an ancestral feature, while mesocarp undeveloped, spongy and fleshy are the later derived. Sinojackia originated in Central-Southeast China during the early Miocene. In this period, it experienced elevated diversification and migrated from the Central-Southeast China to Hunan Province and Sichuan Province with the development of the Asian monsoon and East Asian flora. Sinojackia experienced elevated diversification at intraspecies levels that mainly occurred in the Quaternary. Glacial-interglacial interactions with the monsoon climate may provide favorable expansion conditions for Sinojackia on a small-scale.
... Different organisms display different preferences for genetic codon usage; in one species, different genes exhibit genetic codon bias [197]. Intriguingly, the core circadian genes in the circadian systems exhibit overt codon bias in cyanobacteria, Neurospora, and Drosophila. ...
Article
Full-text available
Circadian clocks drive a large array of physiological and behavioral activities. At the molecular level, circadian clocks are composed of positive and negative elements that form core oscillators generating the basic circadian rhythms. Over the course of the circadian period, circadian negative proteins undergo progressive hyperphosphorylation and eventually degrade, and their stability is finely controlled by complex post-translational pathways, including protein modifications, genetic codon preference, protein–protein interactions, chaperon-dependent conformation maintenance, degradation, etc. The effects of phosphorylation on the stability of circadian clock proteins are crucial for precisely determining protein function and turnover, and it has been proposed that the phosphorylation of core circadian clock proteins is tightly correlated with the circadian period. Nonetheless, recent studies have challenged this view. In this review, we summarize the research progress regarding the function, regulation, and mechanism of protein stability in the circadian clock systems of multiple model organisms, with an emphasis on Neurospora crassa, in which circadian mechanisms have been extensively investigated. Elucidation of the highly complex and dynamic regulation of protein stability in circadian clock networks would greatly benefit the integrated understanding of the function, regulation, and mechanism of protein stability in a wide spectrum of other biological processes.
... Additionally, the phenomenon where the use frequency of synonymous codons is imbalanced is known as CUB. CUB has undergone evolutionary changes in different organisms as a result of natural selection, genetic drift mutation pressure, and this bias indicates the occurrence of adaptations aimed at evading the host's immune system and ensuring survival [9][10][11][12][13][14]. Codon usage is commonly linked to various factors such as G+C content, gene length, secondary protein structure, compositional constraints, protein expression levels and host tRNA profiles [8,[15][16][17][18]. ...
Article
Full-text available
Prunus necrotic ringspot virus (PNRSV) is a significant virus of ornamental plants and fruit trees. It is essential to study this virus due to its impact on the horticultural industry. Several studies on PNRSV diversity and phytosanitary detection technology were reported, but the content on the codon usage bias (CUB), dinucleotide preference and codon pair bias (CPB) of PNRSV is still uncertain. We performed comprehensive analyses on a dataset consisting of 359 coat protein (CP) gene sequences in PNRSV to examine the characteristics of CUB, dinucleotide composition, and CPB. The CUB analysis of PNRSV CP sequences showed that it was not only affected by natural selection, but also affected by mutations, and natural selection played a more significant role compared to mutations as the driving force. The dinucleotide composition analysis showed an over-expression of the CpC/GpA dinucleotides and an under-expression of the UpA/GpC dinucleotides. The dinucleotide composition of the PNRSV CP gene showed a weak association with the viral lineages and hosts, but a strong association with viral codon positions. Furthermore, the CPB of PNRSV CP gene is low and is related to dinucleotide preference and codon usage patterns. This research provides reference for future research on PNRSV genetic diversity and gene evolution mechanism.
Article
Full-text available
In this study, the complete plastome sequence of Nigella sativa (black seed), was analyzed for the first time. The plastome spans approximately 154,120 bp, comprising four sections: the Large Single-Copy (LSC) (85,538 bp), the Small Single-Copy (SSC) (17,984 bp), and two Inverted Repeat (IR) regions (25,299 bp). A comparative study of N. sativa’s plastome with ten other species from various genera in the Ranunculaceae family reveals substantial structural variations. The contraction of the inverted repeat region in N. sativa influences the boundaries of single-copy regions, resulting in a shorter plastome size than other species. When comparing the plastome of N. sativa with those of its related species, significant divergence is observed, particularly except for N. damascena. Among these, the plastome of A. glaucifolium displays the highest average pairwise sequence divergence (0.2851) with N. sativa, followed by A. raddeana (0.2290) and A. coerulea (0.1222). Furthermore, the study identified 12 distinct hotspot regions characterized by elevated Pi values (> 0.1). These regions include trnH-GUG-psbA, matK-trnQ-UUG, psbK-trnR-UCU, atpF-atpI, rpoB-psbD, ycf3-ndhJ, ndhC-cemA, petA-psaJ, trnN-GUU-ndhF, trnV-GAC-rps12, ycf2-trnI-CAU, and ndhA-ycf1. Approximately, 24 tandem and 48 palindromic and forward repeats were detected in N. sativa plastome. The analysis revealed 32 microsatellites with the majority being mononucleotide repeats. In the N. sativa plastome, phenylalanine had the highest number of codons (1982 codons), while alanine was the least common amino acid with 260 codons. A phylogenetic tree, constructed using protein-coding genes, revealed a distinct monophyletic clade comprising N. sativa and N. damascene, closely aligned with the Cimicifugeae tribe and exhibiting robust support. This plastome provides valuable genetic information for precise species identification, phylogenetic resolution, and evolutionary studies of N. sativa.
Article
Full-text available
Ipomoea species have diverse uses as ornamentals, food, and medicine. However, their genomic information is limited; I. alba and I. obscura were sequenced and assembled. Their chloroplast genomes were 161,353 bp and 159,691 bp, respectively. Both genomes exhibited a quadripartite structure, consisting of a pair of inverted repeat (IR) regions, which are separated by the large single-copy (LSC) and small single-copy (SSC) regions. The overall GC content was 37.5% for both genomes. A total of 104 and 93 simple sequence repeats, 50 large repeats, and 30 and 22 short tandem repeats were identified in the two chloroplast genomes, respectively. G and T were more preferred than C and A at the third base position based on the Parity Rule 2 plot analysis, and the neutrality plot revealed correlation coefficients of 0.126 and 0.105, indicating the influence of natural selection in shaping the codon usage bias in most protein-coding genes (CDS). Genome comparative analyses using 31 selected Ipomoea taxa from Thailand showed that their chloroplast genomes are rather conserved, but the presence of expansion or contraction of the IR region was identified in some of these Ipomoea taxa. A total of five highly divergent regions were identified, including the CDS genes accD, ndhA, and ndhF, as well as the intergenic spacer regions psbI-atpA and rpl32-ccsA. Phylogenetic analysis based on both the complete chloroplast genome sequence and CDS datasets of 31 Ipomoea taxa showed that I. alba is resolved as a group member for series (ser.) Quamoclit, which contains seven other taxa, including I. hederacea, I. imperati, I. indica, I. nil, I. purpurea, I. quamoclit, and I. × sloteri, while I. obscura is grouped with I. tiliifolia, both of which are under ser. Obscura, and is closely related to I. biflora of ser. Pes-tigridis. Divergence time estimation using the complete chloroplast genome sequence dataset indicated that the mean age of the divergence for Ipomoeeae, Argyreiinae, and Astripomoeinae, was approximately 29.99 Mya, 19.81 Mya, and 13.40 Mya, respectively. The node indicating the divergence of I. alba from the other members of Ipomoea was around 10.06 Mya, and the split between I. obscura and I. tiliifolia is thought to have happened around 17.13 Mya. The split between the I. obscura accessions from Thailand and Taiwan is thought to have taken place around 0.86 Mya.
Article
Full-text available
Meconopsis torquata Prain 1906, a national second-class rare and endangered plant, is reported here for the first time for its complete chloroplast genome. The genome is 153,290 bp in length, comprising a large single-copy region (LSC, 83,918 bp), a small single-copy region (SSC, 17,740 bp), and two inverted repeat sequences (IRa and IRb, each 25,816 bp). The overall GC content is 38.7%, with the IR region having the highest content (43.1%). The genome is annotated with 112 unique genes, including 4 rRNA genes, 29 tRNA genes, and 79 protein-coding genes. Analysis of codon usage bias reveals that codons ending in A/T account for 96.7% of those with a Relative Synonymous Codon Usage (RSCU) value above 1. This predominance of A/T-ending codons might be indicative of M. torquata adaptation to high-altitude environments. Phylogenetic analysis reveals a close kinship between M. torquata and M. pinnatifolia and M. paniculata, indicating that the ancestral groups of these species might have a complex evolutionary history. This study uncovers the genetic characteristics and adaptive evolution of M. torquata, offering a new perspective in understanding the phylogenetic relationships within the genus. The findings not only provide a solid theoretical foundation for the conservation and sustainable use of this rare and endangered species but also offer significant scientific support for the conservation of biodiversity.