Figure 3 - uploaded by Alhussain Aodah
Content may be subject to copyright.
Factorial design response surface plots describing the effect of independent variables on the dependent variables. (A) RT, (B) theoretical plates, and (C) tailing factor of CPX.

Factorial design response surface plots describing the effect of independent variables on the dependent variables. (A) RT, (B) theoretical plates, and (C) tailing factor of CPX.

Source publication
Article
Full-text available
In the given study, a new reverse-phase high-performance liquid chromatography (RP-HPLC) method has been reported for the simultaneous estimation of ciprofloxacin hydrochloride (CPX) and rutin (RUT) using quality by design (QbD) approach. The analysis was carried out by applying the Box-Behnken design having fewer design points and less experimenta...

Citations

... The calibration was carried out in a range of 2-50 ppm. The data were plotted, and based on the results of the slope and standard deviation, the LOD and LOQ were calculated [25,26]. ...
Article
Full-text available
Fixed-dose combination therapy is considered a practical approach in the treatment of various diseases, as it can simultaneously target different mechanisms of action that achieve the required therapeutic efficacy through a synergistic effect. A combination of hydrochlorothiazide (HTZ), amlodipine (AMD), and valsartan (VLS) has been created for the treatment of hypertension. Therefore, the aim of this study was to develop an optimized UPLC method for the simultaneous quantification of this combination. A DoE at a level of 32 was used to investigate the effects of column temperature (20, 30, and 40 °C) and formic acid concentration (0.05, 0.15, and 0.25%) on the retention time of each active pharmaceutical ingredient (API), the peak area, and the peak symmetry, as well as the resolution between HTZ-AMD and AMD-VLS peaks. The optimized analytical method was validated and used to extract the three APIs from the marketed product. The optimized analytical condition with a column temperature of 27.86 °C and a formic acid concentration of 0.172% showed good separation of the three APIs in 1.62 ± 0.006, 3.59 ± 0.002, and 3.94 ± 0.002 min for HTZ, AMD, and VST, respectively. The developed method was linear with the LOQ for a HTC, AMD, and VST of 0.028, 0.038, and 0.101 ppm, respectively. Moreover, the developed assay was sustainable and robust, with an RSD % of less than 2%. The application of this method in the extraction of HTZ, AMD, and VST from the Exforge® marketed product showed good separation with a measurable drug content of 23.5 ± 0.7, 9.68 ± 0.1, and 165.2 ± 5.2 mg compared to the label claims of 25/10/160 for HTZ, AMD, and VST, respectively.
... The linearity was determined for each API in a range of 0.5 to 50 ppm. The average response of a triple run was carried out and the peak area was plotted against the change in the drug concentration to estimate the line equation using a linear regression analysis [25][26][27]. ...
Article
Full-text available
Metabolic syndrome is an associated condition that occurs together and increases the risk of heart disease and diabetes. These conditions include high blood pressure, high blood sugar, and high body mass index (BMI) in terms of cholesterol and triglyceride levels. Most of the elderly population may administer three drugs to control the above conditions. Therefore, this study aims to develop an analytical assay for the precise analysis of three components and to formulate a Self-Nanoemulsifying Drug-Delivery System (SNEDDS) loaded with three drugs: Rosuvastatin Calcium (RC; antilipidemic), Glibenclamide (GB; antidiabetic), and Candesartan Cilexetil (CC; antihypertensive). A design of the experiment was developed at a level of 32, and the influence of column temperature and flow rate was studied in terms of retention time, peak area, peak asymmetry, and resolution. The assay was subjected to several studies to ensure its validation. Under the optimized conditions—column temperature at 50 °C and flow rate at 0.25 mL/min—the three drugs, RC, GB, and CC, are separated. Their retention times are 0.840, 1.800, and 5.803 min, respectively. The assay was valid in terms of linearity, accuracy, and precision. Moreover, the developed assay shows a good tolerance against any change in the condition. The assay was tested also to separate the drugs in a pharmaceutical formulation as SNEDDs. The assay successfully separates the drug with a good resolution.
... The calibration curves were constructed from 0.5 to 50 ppm. A triple run was carried out and the average peak area was plotted against the drug concentration to estimate the line equation [24][25][26]. ...
Article
Full-text available
The development of analytical procedures capable of simultaneous determination of two or more drugs is in crucial demand due to the availability of different formulations that are composed of different APIs. The presented study aimed to optimize and validate a simple, accurate, and sensitive UPLC analytical method for the simultaneous determination of thymoquinone (TQ) and Glibenclamide (GB) using response surface methodology, and apply this method in pharmaceutical formulations. A 32 full design of experiment was utilized to study the impacts of the independent parameters (acetonitrile ACN concentration, A; and column temperature, B) on the drugs’ analytical attributes (viz, retention time, peak area, and peak asymmetry, in addition to the resolution between TQ and GB peaks). The results revealed that the independent parameters exhibited highly significant (p < 0.05) antagonistic effects on retention times for TQ and GB peaks, in addition to the agnostic effect on GB peak symmetry (p-value = 0.001). Moreover, antagonistic impacts (p < 0.05) on the resolution between TQ and GB peaks were found for both independent factors (A and B). The statistical software suggested 46.86% of ACN (A) and 38.80 °C for column temperature (B) for optimum analytical responses. The optimized green method was discovered to be acceptable in terms of selectivity, precision, accuracy, robustness, sensitivity, and specificity. Moreover, the optimized simultaneous method was successfully able to determine the contents of TQ and GB in self-nanoemulsifying drug delivery (SNEDD) formulation, in which the results showed that GB and TQ content within the prepared formulations were 1.54 ± 0.023 and 3.62 ± 0.031 mg/gm, respectively. In conclusion, the developed assay was efficient and valid in analyzing TQ and GB simultaneously in bulk and self-nanoemulsifying drug delivery system (SNEDDs) formulations.