Fig 20 - uploaded by Damodaran Vasudevan
Content may be subject to copyright.
8: Efflux of TCA cycle intermediates 9: Influx of TCA cycle intermediates

8: Efflux of TCA cycle intermediates 9: Influx of TCA cycle intermediates

Similar publications

Article
Tricarboxylic acid cycle (TCA cycle) is the most effective energy metabolism pathway in higher plants and animals. However, there is no information about its response in plants under environmental stress, especially under polycyclic aromatic hydrocarbons (PAHs) pollution. Here, this study is the first to discuss the intermediate and related enzyme...

Citations

Article
Several anticancer agents have been associated with cardiac toxic effects. The currently proposed mechanisms to explain cardiotoxicity differ among anticancer agents, but in fact, the specific modulation is not completely elucidated. Thus, this systematic review aims to provide an integrative perspective of the molecular mechanisms underlying the toxicity of anticancer agents on heart muscle while using a high-throughput technology, mass spectrometry (MS)-based proteomics. A literature search using PubMed database led to the selection of 27 studies, of which 13 reported results exclusively on animal models, 13 on cardiomyocyte-derived cell lines and only one included both animal and a cardiomyocyte line. The reported anticancer agents were the proteasome inhibitor carfilzomib, anthracyclines daunorubicin, doxorubicin, epirubicin and idarubicin, the antimicrotubule agent docetaxel, the alkylating agent melphalan, the anthracenedione mitoxantrone, the tyrosine kinase inhibitors (TKIs) erlotinib, lapatinib, sorafenib and sunitinib, and the monoclonal antibody trastuzumab. Regarding the MS-based proteomic approaches, electrophoretic separation using two-dimensional (2D) gels coupled with tandem MS (MS/MS) and liquid chromatography-MS/MS (LC-MS/MS) were the most common. Overall, the studies highlighted 1826 differentially expressed proteins across 116 biological processes. Most of them were grouped in larger processes and critically analyzed in the present review. The selection of studies using proteomics on heart muscle allowed to obtain information about the anticancer therapy-induced modulation of numerous proteins in this tissue and to establish connections that have been disregarded in other studies. This systematic review provides interesting points for a comprehensive understanding of the cellular cardiotoxicity mechanisms of different anticancer drugs.
Article
Full-text available
Introduction. Any waste can become a raw material for new products. Therefore, waste should be considered as secondary material resources. Grape pomace is the basic waste of wine industry, and research in its chemical composition may allow for a more effective recycling of food industry waste. Study objects and methods. The research featured sweet and fermented pomace of white and red grapes, namely «Chardonnay», «Sauvignon Blanc», «Riesling», «Pinot Blanc», «Traminer Pink», «Viognier», «Morava» «Pinot Noir», «Roesler», «Cabernet Sauvignon», «Merlot», «Saperavi», and «Rebo». They were obtained in the production of wines at wineries in the Krasnodar region. Mass concentrations of organic acids and cations of alkaline and alkaline-earth elements were determined in extracts by capillary electrophoresis. The data was converted to dry matter. Moisture content was calculated as a percentage of the change in the mass of grape pomace. Results and discussion. The moisture content of sweet pomace varied from 49.33 ± 2.04 to 70.35 ± 0.60%, and in fermented pomace – from 47.49 ± 0.02 to 64.24 ± 0.60%. The varieties were studied for mass concentrations of tartaric, malic, succinic, citric, and lactic acids. Tartaric and malic acids proved to be the most abundant ones. The pomace of Riesling grapes had the greatest amount of tartaric acid (104.47 ± 4.16 g/kg). The «Chardonnay» variety proved rich in malic acid (19.40 ± 2.67 g/kg), while the «Morava» pomace had the biggest amount of citric acid (12.61 ± 1.12) and succinic acid (11.72 ± 1.23). The research also defined concentrations of alkaline and alkaline-earth elements. Their content ranged from 41.04 to 3.29 g/kg. Potassium appeared to be the main cation in the pomace samples. The share of potassium in the total mineralization of pomace was up to 94%. The «Riesling» variety grown near Novorossiysk had the largest amount of potassium (36.46 ± 4.65 g/kg). The samples demonstrated a significant correlation between the content of tartaric acid and potassium. Conclusion. The research revealed a significant variation in the concentration of the organic acids and cations of alkaline and alkalineearth metals, depending on the grape variety, the place of its growth, and processing. The grape pomace samples differed moisture content. It depended on the volume of the liquid fraction, i.e. wort or wine material selected during pressing.
Article
Bio scaffolds used for cutaneous tissue regeneration is a challenging issue in the healthcare system. To help this problem, we aimed to report on fabrication and characterization of citric acid cross-linked carboxymethyl guar gum (CMGG) nanocomposite films loaded with ciprofloxacin for faster wound healing application. Differential scanning calorimeter (DSC) and attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy studies, dynamic light scattering (DLS), scanning electron microscopy (SEM) and X-ray diffraction (XRD) were used as analytical techniques for characterization of nanocomposite film. The morphological characters of nanocomposite film were determined by SEM. The prepared scaffolds were evaluated for the carboxyl content and swelling ratio. Ciprofloxacin was loaded into scaffold and drug release was studied at pH 7.4. The hemolysis assay was used to study the biocompatibility of scaffold films. The formation of ester cross-links between citric acid and CMGG was confirmed by DSC and ATR- FTIR. The total carboxyl content of scaffold was found to be decreased when the amount of CMGG was increased. The swelling of scaffold film was found to be decreased with increase in curing temperature and time. CMGG scaffold films showed high drug loading with non-Fickian release mechanism suggesting controlled release of drug. In vivo wound healing studies were carried out for 5 days. In this study we observed a faster wound healing effect within 5 days by incorporation of ciprofloxacin in the CMGG film and found biocompatible. Hence, these Nanocomposite films show greater potential in treating wounds.