EV connector types: (a) Type 2, (b) CCS combo 2, and (c) Type 4 (CHAdeMO).

EV connector types: (a) Type 2, (b) CCS combo 2, and (c) Type 4 (CHAdeMO).

Source publication
Article
Full-text available
The aim of this paper is to shed light on the question regarding whether the integration of an electric battery as a part of a domestic installation may increase its energy efficiency in comparison with a conventional case. When a battery is included in such an installation, two types of electrical conversion must be considered, i.e., AC/DC and DC/...

Context in source publication

Context 1
... are two recharging types that are available in most vehicles: a full recharge in 3-12 h and fast charge of up to 80% in half an hour. The ways to charge EVs depends on the connector used (presented in Figure 2) and are strongly related to the type of power used (DC or AC) [43][44][45]:  Unplugged: consists of wireless charging with three possible scenarios: at home, at a bus or taxi station (short time), or on-route. ...

Citations

Article
Full-text available
Characterizing the electric energy curve can improve the energy efficiency of existing buildings without any structural change and is the basis for controlling and optimizing building performance. Artificial Intelligence (AI) techniques show much potential due to their accuracy and malleability in the field of pattern recognition, and using these models it is possible to adjust the building services in real time. Thus, the objective of this paper is to determine the AI technique that best forecasts electrical loads. The suggested techniques are random forest (RF), support vector regression (SVR), extreme gradient boosting (XGBoost), multilayer perceptron (MLP), long short-term memory (LSTM), and temporal convolutional network (Conv-1D). The conducted research applies a methodology that considers the bias and variance of the models, enhancing the robustness of the most suitable AI techniques for modeling and forecasting the electricity consumption in buildings. These techniques are evaluated in a single-family dwelling located in the United States. The performance comparison is obtained by analyzing their bias and variance by using a 10-fold cross-validation technique. By means of the evaluation of the models in different sets, i.e., validation and test sets, their capacity to reproduce the results and the ability to properly forecast on future occasions is also evaluated. The results show that the model with less dispersion, both in the validation set and test set, is LSTM. It presents errors of −0.02% of nMBE and 2.76% of nRMSE in the validation set and −0.54% of nMBE and 4.74% of nRMSE in the test set.
Article
Full-text available
The increasing trend in energy demand is higher than the one from renewable generation, in the coming years. One of the greatest sources of consumption are buildings. The energy management of a building by means of the production of photovoltaic energy in situ is a common alternative to improve sustainability in this sector. An efficient trade-off of the photovoltaic source in the fields of Zero Energy Buildings (ZEB), nearly Zero Energy Buildings (nZEB) or MicroGrids (MG) requires an accurate forecast of photovoltaic production. These systems constantly generate data that are not used. Artificial Intelligence methods can take advantage of this missing information and provide accurate forecasts in real time. Thus, in this manuscript a comparative analysis is carried out to determine the most appropriate Artificial Intelligence methods to forecast photovoltaic production in buildings. On the one hand, the Machine Learning methods considered are Random Forest (RF), Extreme Gradient Boost (XGBoost), and Support Vector Regressor (SVR). On the other hand, Deep Learning techniques used are Standard Neural Network (SNN), Recurrent Neural Network (RNN), and Convolutional Neural Network (CNN). The models are checked with data from a real building. The models are validated using normalized Mean Bias Error (nMBE), normalized Root Mean Squared Error (nRMSE), and the coefficient of variation (R2). Standard deviation is also used in conjunction with these metrics. The results show that the models forecast the test set with errors of less than 2.00% (nMBE) and 7.50% (nRMSE) in the case of considering nights, and 4.00% (nMBE) and 11.50% (nRMSE) if nights are not considered. In both situations, the R2 is greater than 0.85 in all models.