Diagram of the BCI-hand exoskeleton. 1) 32-electrode electroencephalograph; 2) electroencephalograph, amplifi er; 3) computer with mental state classifi er software; 4) presentation monitor; 5) hand exoskeleton.

Diagram of the BCI-hand exoskeleton. 1) 32-electrode electroencephalograph; 2) electroencephalograph, amplifi er; 3) computer with mental state classifi er software; 4) presentation monitor; 5) hand exoskeleton.

Source publication
Article
Full-text available
Objectives. To assess the efficacy of using a brain–computer interface with a hand exoskeleton (BCI–exoskeleton) in the complex rehabilitation of patients with the sequelae of cerebrovascular accidents and to determine the minimally adequate reserves of cognitive functions required for the patient to carry out effective mental training using the mo...

Context in source publication

Context 1
... reactions during IM [24,25]. EEG signals were fi ltered in the band 5-30 Hz. The measure of classifi cation accuracy was the percentage of correct classifi er responses (recognition greater than the random at p > 33%, as patients carried out three mental tasks following instructions). The components of the BCI-exoskeleton are shown in Fig. 1. carrying out a defi ned movement (for example, unclenching the hand, extending the wrist, forming a fi st, lifting a cup from the table, etc.) from the fi rst-person perspective ...

Similar publications

Article
Full-text available
A brain-computer interface (BCI) used to control a hand exoskeleton provides a tool for rehabilitation of the arm motor function (MF) after stroke and has proven efficacy and a potential to stimulate brain neuroplasticity. A study was made to analyze the effect of repeated rehabilitation courses with a BCI + exo-skeleton (2 to 9 months after the fi...

Citations

Article
Background: The recovery of upper limb function is crucial to the daily life activities of stroke patients. Brain-computer interface technology may have potential benefits in treating upper limb dysfunction. Objective: To systematically evaluate the efficacy of brain-computer interfaces (BCI) in the rehabilitation of upper limb motor function in stroke patients. Methods: Six databases up to July 2023 were reviewed according to the PRSIMA guidelines. Randomized controlled trials of BCI-based upper limb functional rehabilitation for stroke patients were selected for meta-analysis by pooling standardized mean difference (SMD) to summarize the evidence. The Cochrane risk of bias tool was used to assess the methodological quality of the included studies. Results: Twenty-five studies were included. The studies showed that BCI had a small effect on the improvement of upper limb function after the intervention. In terms of total duration of training, < 12 hours of training may result in better rehabilitation, but training duration greater than 12 hours suggests a non significant therapeutic effect of BCI training. Conclusion: This meta-analysis suggests that BCI has a slight efficacy in improving upper limb function and has favorable long-term outcomes. In terms of total duration of training, < 12 hours of training may lead to better rehabilitation.
Article
Purpose: Many recent clinical studies have suggested that the combination of brain-computer interfaces (BCIs) can induce neurological recovery and improvement in motor function. In this review, we performed a systematic review and meta-analysis to evaluate the clinical effects of BCI-robot systems. Methods: The articles published from January 2010 to December 2020 have been searched by using the databases (EMBASE, PubMed, CINAHL, EBSCO, Web of Science and manual search). The single-group studies were qualitatively described, and only the controlled-trial studies were included for the meta-analysis. The mean difference (MD) of Fugl-Meyer Assessment (FMA) scores were pooled and the random-effects model method was used to perform the meta-analysis. The PRISMA criteria were followed in current review. Results: A total of 897 records were identified, eight single-group studies and 11 controlled-trial studies were included in our review. The systematic analysis indicated that the BCI-robot systems had a significant improvement on motor function recovery. The meta-analysis showed there were no statistic differences between BCI-robot groups and robot groups, neither in the immediate effects nor long-term effects (p > 0.05). Conclusion: The use of BCI-robot systems has significant improvement on the motor function recovery of hemiparetic upper-limb, and there is a sustaining effect. The meta-analysis showed no statistical difference between the experimental group (BCI-robot) and the control group (robot). However, there are a few shortcomings in the experimental design of existing studies, more clinical trials need to be conducted, and the experimental design needs to be more rigorous.Implications for RehabilitationIn this review, we evaluated the clinical effects of brain-computer interface with robot on upper-limb function for post-stroke rehabilitation. After we screened the databases, 19 articles were included in this review. These articles all clinical trial research, they all used non-invasive brain-computer interfaces and upper-limb robot.We conducted the systematic review with nine articles, the result indicated that the BCI-robot system had a significant improvement on motor function recovery. Eleven articles were included for the meta-analysis, the result showed there were no statistic differences between BCI-robot groups and robot groups, neither in the immediate effects nor long-term effects.We thought the result of meta-analysis which showed no statistic difference was probably caused by the heterogenicity of clinical trial designs of these articles.We thought the BCI-robot systems are promising strategies for post-stroke rehabilitation. And we gave several suggestions for further research: (1) The experimental design should be more rigorous, and describe the experimental designs in detail, especially the control group intervention, to make the experiment replicability. (2) New evaluation criteria need to be established, more objective assessment such as biomechanical assessment, fMRI should be utilised as the primary outcome. (3) More clinical studies with larger sample size, novel external devices, and BCI systems need to be conducted to investigate the differences between BCI-robot system and other interventions. (4) Further research could shift the focus to the patients who are in subacute stage, to explore if the early BCI training can make a positive impact on cerebral cortical recovery.
Article
Background: Cognitive impairment is a frequent consequence of stroke and can impact on a person's ability to perform everyday activities. Occupational therapists use a range of interventions when working with people who have cognitive impairment poststroke. This is an update of a Cochrane Review published in 2010. Objectives: To assess the impact of occupational therapy on activities of daily living (ADL), both basic and instrumental, global cognitive function, and specific cognitive abilities in people who have cognitive impairment following a stroke. Search methods: We searched the Cochrane Stroke Group Trials Register, CENTRAL, MEDLINE, Embase, four other databases (all last searched September 2020), trial registries, and reference lists. Selection criteria: We included randomised and quasi-randomised controlled trials that evaluated an intervention for adults with clinically defined stroke and confirmed cognitive impairment. The intervention needed either to be provided by an occupational therapist or considered within the scope of occupational therapy practice as defined in the review. We excluded studies focusing on apraxia or perceptual impairments or virtual reality interventions as these are covered by other Cochrane Reviews. The primary outcome was basic activities of daily living (BADL) such as dressing, feeding, and bathing. Secondary outcomes were instrumental ADL (IADL) (e.g. shopping and meal preparation), community integration and participation, global cognitive function and specific cognitive abilities (including attention, memory, executive function, or a combination of these), and subdomains of these abilities. We included both observed and self-reported outcome measures. Data collection and analysis: Two review authors independently selected studies that met the inclusion criteria, extracted data, and assessed the certainty of the evidence. A third review author moderated disagreements if consensus was not reached. We contacted trial authors for additional information and data, where available. We assessed the certainty of key outcomes using GRADE. MAIN RESULTS: We included 24 trials from 11 countries involving 1142 (analysed) participants (two weeks to eight years since stroke onset). This update includes 23 new trials in addition to the one study included in the previous version. Most were parallel randomised controlled trials except for one cross-over trial and one with a two-by-two factorial design. Most studies had sample sizes under 50 participants. Twenty studies involved a remediation approach to cognitive rehabilitation, particularly using computer-based interventions. The other four involved a compensatory and adaptive approach. The length of interventions ranged from 10 days to 18 weeks, with a mean total length of 19 hours. Control groups mostly received usual rehabilitation or occupational therapy care, with a few receiving an attention control that was comparable to usual care; two had no intervention (i.e. a waiting list). Apart from high risk of performance bias for all but one of the studies, the risk of bias for other aspects was mostly low or unclear. For the primary outcome of BADL, meta-analysis found a small effect on completion of the intervention with a mean difference (MD) of 2.26 on the Functional Independence Measure (FIM) (95% confidence interval (CI) 0.17 to 4.22; P = 0.03, I2 = 0%; 6 studies, 336 participants; low-certainty evidence). Therefore, on average, BADL improved by 2.26 points on the FIM that ranges from 18 (total assist) to 126 (complete independence). On follow-up, there was insufficient evidence of an effect at three months (MD 10.00, 95% CI -0.54 to 20.55; P = 0.06, I2 = 53%; 2 studies, 73 participants; low-certainty evidence), but evidence of an effect at six months (MD 11.38, 95% CI 1.62 to 21.14, I2 = 12%; 2 studies, 73 participants; low-certainty evidence). These differences are below 22 points which is the established minimal clinically important difference (MCID) for the FIM for people with stroke. For IADL, the evidence is very uncertain about an effect (standardised mean difference (SMD) 0.94, 95% CI 0.41 to 1.47; P = 0.0005, I2 = 98%; 2 studies, 88 participants). For community integration, we found insufficient evidence of an effect (SMD 0.09, 95% CI -0.35 to 0.54; P = 0.68, I2 = 0%; 2 studies, 78 participants). There was an improvement of clinical importance in global cognitive functional performance after the intervention (SMD 0.35, 95% CI 0.16 to 0.54; P = 0.0004, I2 = 0%; 9 studies, 432 participants; low-certainty evidence), equating to 1.63 points on the Montreal Cognitive Assessment (MoCA) (95% CI 0.75 to 2.52), which exceeds the anchor-based MCID of the MoCA for stroke rehabilitation patients of 1.22. We found some effect for attention overall (SMD -0.31, 95% CI -0.47 to -0.15; P = 0.0002, I2 = 20%; 13 studies, 620 participants; low-certainty evidence), equating to a difference of 17.31 seconds (95% CI 8.38 to 26.24), and for executive functional performance overall (SMD 0.49, 95% CI 0.31 to 0.66; P < 0.00001, I2 = 74%; 11 studies, 550 participants; very low-certainty evidence), equating to 1.41 points on the Frontal Assessment Battery (range: 0-18). Of the cognitive subdomains, we found evidence of effect of possible clinical importance, immediately after intervention, for sustained visual attention (moderate certainty) equating to 15.63 seconds, for working memory (low certainty) equating to 59.9 seconds, and thinking flexibly (low certainty), compared to control. Authors' conclusions: The effectiveness of occupational therapy for cognitive impairment poststroke remains unclear. Occupational therapy may result in little to no clinical difference in BADL immediately after intervention and at three and six months' follow-up. Occupational therapy may slightly improve global cognitive performance of a clinically important difference immediately after intervention, likely improves sustained visual attention slightly, and may slightly increase working memory and flexible thinking after intervention. There is evidence of low or very low certainty or insufficient evidence for effect on other cognitive domains, IADL, and community integration and participation. Given the low certainty of much of the evidence in our review, more research is needed to support or refute the effectiveness of occupational therapy for cognitive impairment after stroke. Future trials need improved methodology to address issues including risk of bias and to better report the outcome measures and interventions used.