Figure - available from: Shock and Vibration
This content is subject to copyright. Terms and conditions apply.
Diagram of PC girders (unit: mm).

Diagram of PC girders (unit: mm).

Source publication
Article
Full-text available
Structural responses have been used as inputs in the evaluation procedures of civil structures for years. Apart from the degradation of a structure itself, changes in the environmental conditions affect its characteristics. For adequate maintenance, it is necessary to quantify the environment-induced changes and discriminate them from the effects d...

Citations

... A higher MC in the concrete increases its E-modulus, which is the opposite of timber behavior [37]. However, two studies on single concrete elements conclude that an increased MC leads to a lower natural frequency due to an increased mass [38,39]. Considering the concrete material properties alone, an increase in MC would decrease the natural frequencies for structural elements, which is similar to the behavior of timber. ...
Article
Full-text available
With the increased availability of timber materials, such as cross-laminated timber, the number of buildings using timber as a structural material has been rapidly increasing. As these buildings are new to the market, limited data and research on their long-term structural modal performance are available. This is particularly important in timber buildings since the material properties of wood are highly affected by environmental factors, especially the moisture content. Over time, the evolution of the dynamic properties is essential for damage indication in structural health monitoring systems since natural changes can mask the influence of damage. This work presents three years of observations from a structural monitoring system collecting data ever since completing a four-story timber-concrete hybrid building in Sweden. Ambient vibrations of the building were measured using geophones, resulting in 3,100 datasets. The temperature and relative humidity were measured both externally using a weather station and internally using sensors embedded in several walls and a slab in the building. The observed natural frequencies of the building vary with ± 0.2 Hz around the mean value over time. Linear regression analysis shows a significant correlation between the moisture content of a cross-laminated timber slab and the natural frequencies (coefficient of determination R2 up to 0.84). A predictive model for the natural frequencies is presented, taking seasonal variations and a dry-out of the structure into account. Variations from the expected values are ± 0.1 Hz at most. The model clearly narrows the error margins for damage indication in a structural health monitoring system.
... A great many structural damage detection techniques have been proposed for assessing damage location and severity based on changes in frequencies, mode shapes, or their combinations [7][8][9]. e identification of a structure's natural frequency is a significant task in structural health monitoring (SHM), since it is a critical parameter in structural damage assessment [10,11]. Once a structure's modal characteristics have been obtained, the change of structural stiffness should be predictable [12,13]. ...
Article
Full-text available
Due to many nondamage factors such as temperature, humidity, carbonation, and corrosion effects on natural frequency, the key problem of the application frequency-based method to detect damage is to reveal the rules of these factors affect natural frequency and further to eliminate their effects. The long-term characteristics of reinforced concrete structures require a lot of attention, especially in corrosive environment. In this paper, an experimental investigation was conducted to study the deflection and natural frequency of reinforced concrete beam in a marine environmental chamber for six corrosion stages (accelerated corrosion for 0, 20, 40, 70, 100, and 140 days). The experimental results demonstrated that deflection increases with corrosion time, while natural frequency decreases with corrosion time. Based on the accelerate corrosion test data of reinforced concrete beams, the general expression of the relationship between corrosion depth and natural frequency has been established through the fitting curve method. The polynomial model has been selected for establishing the relationship between steel corrosion depth (including the main reinforcement and stirrup) and natural frequency. The reason for selecting the polynomial model is that the sum of squares due to error (SSE) is closer to 0 and the coefficient of multiple determination (R-square) is closer to 1. This investigations help to discriminate the cause of reinforced concrete beams natural frequency change, to eliminate nondamage factors affects, and to apply many structural damage identification methods effectively.
Article
Environment has significant impacts on the structure performance and will change features of sensor measurements on the monitored structure. The effect of varying environment needs to be considered and eliminated while conducting structural health monitoring. In order to achieve this purpose, a baseline model based structural health monitoring method is proposed in this paper. The relationship between signal features and varying environment, known as a baseline model, is first established. Then, a tolerance range of the signal feature is evaluated via a data based statistical analysis. Furthermore, the health indicator, which is defined as the proportion of signal features within the tolerance range, is used to judge whether the structural system is in normal working condition or not so as to implement the structural health monitoring. Finally, experimental data analysis for an operating wind turbine is conducted and the results demonstrate the performance of the proposed new technique.