Figure - available from: Computational Intelligence and Neuroscience
This content is subject to copyright. Terms and conditions apply.
Correlation regression analysis of arteriosclerosis in eyes with BRVO.

Correlation regression analysis of arteriosclerosis in eyes with BRVO.

Source publication
Article
Full-text available
Artificial intelligence has become one of the most rapidly developing disciplines in the application field of pattern recognition. In target recognition, sometimes, there are multiple identical or similar copies of the target to be recognized in the image, and it is difficult to classify and estimate by traditional methods. In this case, it is nece...

Similar publications

Article
Full-text available
Unlabelled: During the occupation of the Chornobyl Nuclear Power Plant (ChNPP) in 2022, a group of employees remained in the working town for a long time. These personnel were exposed to long-term radiation and non-radiation factors of the production environment, as well as stress and other factors. These factors could result in negative changes o...

Citations

... Zhang [64] developed a TCM assistive diagnostic system by utilizing bidirectional LSTM with RF for named entity recognition, a CNN for text processing for disease diagnosis, and an integrated learning model for syndrome prediction. Zhao [65] utilized an adaptive resonant neural network for quantitative diagnosis of TCM syndrome types. ...
Article
Full-text available
Traditional Chinese medicine (TCM) has been practiced for thousands of years with clinical efficacy. Natural products and their effective agents such as artemisinin and paclitaxel have saved millions of lives worldwide. Artificial intelligence is being increasingly deployed in TCM. By summarizing the principles and processes of deep learning and traditional machine learning algorithms, analyzing the application of machine learning in TCM, reviewing the results of previous studies, this study proposed a promising future perspective based on the combination of machine learning, TCM theory, chemical compositions of natural products, and computational simulations based on molecules and chemical compositions. In the first place, machine learning will be utilized in the effective chemical components of natural products to target the pathological molecules of the disease which could achieve the purpose of screening the natural products on the basis of the pathological mechanisms they target. In this approach, computational simulations will be used for processing the data for effective chemical components, generating datasets for analyzing features. In the next step, machine learning will be used to analyze the datasets on the basis of TCM theories such as the superposition of syndrome elements. Finally, interdisciplinary natural product-syndrome research will be established by unifying the results of the two steps outlined above, potentially realizing an intelligent artificial intelligence diagnosis and treatment model based on the effective chemical components of natural products under the guidance of TCM theory. This perspective outlines an innovative application of machine learning in the clinical practice of TCM based on the investigation of chemical molecules under the guidance of TCM theory.
... In the study of Zhao Y et al. an upgraded collaborative neural network model was suggested in order to address the self-organizing mapping network's Kohonen layer structure. The study investigated the relationship between branch retinal vein occlusion and arteriosclerosis by quantitatively measuring retinal vessel diameter and choroidal thickness with the use of Kohonen networks [44]. In addition, in psychiatry, neural networks can be successfully used, for example, in the study of Loula et al. ...
... In the dermatologic study of Styła et al. the dermatoscopic images were used to train Kohonen neural networks to provide fully automatic diagnostic systems capable of determining the type of pigmented skin lesion [48]. Referring to the above and recent studies, it was shown that machine learning algorithms, particularly Kohonen networks, might be useful in medicine and can improve diagnosis and give clinicians more tools in treatment planning [42][43][44][45][46][47][48][49][50][51][52]. According to our study, we can recommend other specialists use Kohonen networks in their daily practice to ease the prediction of the progression of periodontitis with the usage of data: gender, age, active nicotinism, the number of teeth still present, the approximate plaque index (API), bleeding on probing (BoP), pocket depth (PD), and clinical attachment loss. ...
Article
Full-text available
(1) Background: Periodontitis is an inflammatory condition that affects the tissues surrounding the tooth and causes clinical attachment loss, which is the loss of periodontal attachment (CAL). Periodontitis can advance in various ways, with some patients experiencing severe periodontitis in a short period of time while others may experience mild periodontitis for the rest of their lives. In this study, we have used an alternative methodology to conventional statistics, self-organizing maps (SOM), to group the clinical profiles of patients with periodontitis. (2) Methods: To predict the periodontitis progression and to choose the best treatment plan, we can use artificial intelligence, more precisely Kohonen’s self-organizing maps (SOM). In this study, 110 patients, both genders, between the ages of 30 and 60, were included in this retrospective analysis. (3) Results: To discover the pattern of patients according to the periodontitis grade and stage, we grouped the neurons together to form three clusters: Group 1 was made up of neurons 12 and 16 that represented a percentage of slow progression of almost 75%; Group 2 was made up of neurons 3, 4, 6, 7, 11, and 14 in which the percentage of moderate progression was almost 65%; and Group 3 was made up of neurons 1, 2, 5, 8, 9, 10, 13, and 15 that represented a percentage of rapid progression of almost 60%. There were statistically significant differences in the approximate plaque index (API), and bleeding on probing (BoP) versus groups (p < 0.0001). The post-hoc tests showed that API, BoP, pocket depth (PD), and CAL values were significantly lower in Group 1 relative to Group 2 (p < 0.05) and Group 3 (p < 0.05). A detailed statistical analysis showed that the PD value was significantly lower in Group 1 relative to Group 2 (p = 0.0001). Furthermore, the PD was significantly higher in Group 3 relative to Group 2 (p = 0.0068). There was a statistically significant CAL difference between Group 1 relative to Group 2 (p = 0.0370). (4) Conclusions: Self-organizing maps, in contrast to conventional statistics, allow us to view the issue of periodontitis advancement by illuminating how the variables are organized in one or the other of the various suppositions.
Preprint
Full-text available
p> Vision-threatening conditions, such as age-related macular degeneration (AMD) and central serous chorioretinopathy (CSCR), arise from dysfunctions in the highly vascular choroid layer in the eye’s posterior segment. Optical coherence tomography (OCT) images play a crucial role in diagnosing choroidal structural changes in clinical practice. This review emphasizes the significant efforts in developing precise detection, quantification, and automated disease classification of choroidal biomarkers. The rapid progress of artificial intelligence (AI) has triggered transformative breakthroughs across sectors including medical image analysis. Recently, the integration of AI within the diagnosis and treatment of choroidal diseases has captured significant attention. Multiple studies highlight AI’s potential to enhance diagnostic precision and optimize clinical outcomes in this context. The review provides an extensive overview of AI’s current applications in choroidal analysis using OCT imaging. It encompasses a diverse array of algorithms and techniques employed for biomarker detection, such as thickness and vascularity index, and for identifying diseases like AMD and CSCR. The overarching goal of this review is to provide an updated and comprehensive exploration of AI’s impact on the choroid, highlighting its potential, challenges, and role in driving innovation in the field. </p
Preprint
Full-text available
p>Vision-threatening conditions, such as age-related macular degeneration (AMD) and central serous chorioretinopathy (CSCR), arise from dysfunctions in the highly vascular choroid layer in the eye’s posterior segment. Optical coherence tomography (OCT) images play a crucial role in diagnosing choroidal structural changes in clinical practice. This review emphasizes the significant efforts in developing precise detection, quantification, and automated disease classification of choroidal biomarkers. The rapid progress of artificial intelligence (AI) has triggered transformative breakthroughs across sectors including medical image analysis. Recently, the integration of AI within the diagnosis and treatment of choroidal diseases has captured significant attention. Multiple studies highlight AI’s potential to enhance diagnostic precision and optimize clinical outcomes in this context. The review provides an extensive overview of AI’s current applications in choroidal analysis using OCT imaging. It encompasses a diverse array of algorithms and techniques employed for biomarker detection, such as thickness and vascularity index, and for identifying diseases like AMD and CSCR. The overarching goal of this review is to provide an updated and comprehensive exploration of AI’s impact on the choroid, highlighting its potential, challenges, and role in driving innovation in the field.</p
Preprint
Full-text available
p>Vision-threatening conditions, such as age-related macular degeneration (AMD) and central serous chorioretinopathy (CSCR), arise from dysfunctions in the highly vascular choroid layer in the eye’s posterior segment. Optical coherence tomography (OCT) images play a crucial role in diagnosing choroidal structural changes in clinical practice. This review emphasizes the significant efforts in developing precise detection, quantification, and automated disease classification of choroidal biomarkers. The rapid progress of artificial intelligence (AI) has triggered transformative breakthroughs across sectors including medical image analysis. Recently, the integration of AI within the diagnosis and treatment of choroidal diseases has captured significant attention. Multiple studies highlight AI’s potential to enhance diagnostic precision and optimize clinical outcomes in this context. The review provides an extensive overview of AI’s current applications in choroidal analysis using OCT imaging. It encompasses a diverse array of algorithms and techniques employed for biomarker detection, such as thickness and vascularity index, and for identifying diseases like AMD and CSCR. The overarching goal of this review is to provide an updated and comprehensive exploration of AI’s impact on the choroid, highlighting its potential, challenges, and role in driving innovation in the field. </p
Preprint
Full-text available
p>Vision-threatening conditions, such as age-related macular degeneration (AMD) and central serous chorioretinopathy (CSCR), arise from dysfunctions in the highly vascular choroid layer in the eye’s posterior segment. Optical coherence tomography (OCT) images play a crucial role in diagnosing choroidal structural changes in clinical practice. This review emphasizes the significant efforts in developing precise detection, quantification, and automated disease classification of choroidal biomarkers. The rapid progress of artificial intelligence (AI) has triggered transformative breakthroughs across sectors including medical image analysis. Recently, the integration of AI within the diagnosis and treatment of choroidal diseases has captured significant attention. Multiple studies highlight AI’s potential to enhance diagnostic precision and optimize clinical outcomes in this context. The review provides an extensive overview of AI’s current applications in choroidal analysis using OCT imaging. It encompasses a diverse array of algorithms and techniques employed for biomarker detection, such as thickness and vascularity index, and for identifying diseases like AMD and CSCR. The overarching goal of this review is to provide an updated and comprehensive exploration of AI’s impact on the choroid, highlighting its potential, challenges, and role in driving innovation in the field. </p