Figure - available from: Journal of Sensors
This content is subject to copyright. Terms and conditions apply.
Convolutional layer working mode.

Convolutional layer working mode.

Source publication
Article
Full-text available
Deep learning approaches have significantly enhanced the classification accuracy of hyperspectral images (HSIs). However, the classification process still faces difficulties such as those posed by high data dimensions, large data volumes, and insufficient numbers of labeled samples. To enhance the classification accuracy and reduce the data dimensi...

Similar publications

Preprint
Full-text available
During the last decade, hyperspectral images have attracted increasing interest from researchers worldwide. They provide more detailed information about an observed area and allow an accurate target detection and precise discrimination of objects compared to classical RGB and multispectral images. Despite the great potentialities of hyperspectral t...
Article
Full-text available
To emphasize the semantic impact of local semantic and grammatical information among adjacent words in the input text, we establish a constraint functions-based quantum-like tensor compression sentence representation model by integrating the concept of extending the pure state-based density matrix to the mixed-state projection operator in quantum m...
Article
Full-text available
Reducing dimension redundancy to find simplifying patterns in high-dimensional datasets and complex networks has become a major endeavor in many scientific fields. However, detecting the dimensionality of their latent space is challenging but necessary to generate efficient embeddings to be used in a multitude of downstream tasks. Here, we propose...
Article
Full-text available
Foliage penetration is an unsolved important part of border surveillance of remote areas between regular border crossing points. Detecting penetrating objects (e.g., persons and cars) through dense foliage in various climate conditions using visual sensors is prone to high fault rates. Through-foliage scenarios contain an unprecedented amount of oc...

Citations

... This article has been retracted by Hindawi, as publisher, following an investigation undertaken by the publisher [1]. This investigation has uncovered evidence of systematic manipulation of the publication and peer-review process. ...
Article
Full-text available
Hyperspectral images (HSIs) contain subtle spectral details and rich spatial contextures of land cover that benefit from developments in spectral imaging and space technology. The classification of HSIs, which aims to allocate an optimal label for each pixel, has broad prospects in the field of remote sensing. However, due to the redundancy between bands and complex spatial structures, the effectiveness of the shallow spectral–spatial features extracted by traditional machine-learning-based methods tends to be unsatisfying. Over recent decades, various methods based on deep learning in the field of computer vision have been proposed to allow for the discrimination of spectral–spatial representations for classification. In this article, the crucial factors to discriminate spectral–spatial features are systematically summarized from the perspectives of feature extraction and feature optimization. For feature extraction, techniques to ensure the discrimination of spectral features, spatial features, and spectral–spatial features are illustrated based on the characteristics of hyperspectral data and the architecture of models. For feature optimization, techniques to adjust the feature distances between classes in the classification space are introduced in detail. Finally, the characteristics and limitations of these techniques and future challenges in facilitating the discrimination of features for HSI classification are also discussed further.