Fig 6 - available via license: CC BY-NC-ND
Content may be subject to copyright.
Configuration of the Go game after several moves (payoffs defined on the basis of a standard definition of rough sets).

Configuration of the Go game after several moves (payoffs defined on the basis of a standard definition of rough sets).

Source publication
Article
Full-text available
We define games on the medium of plasmodia of slime mould, unicellular organisms that look like giant amoebae. The plasmodia try to occupy all the food pieces they can detect. Thus, two different plasmodia can compete with each other. In particular, we consider game-theoretically how plasmodia of Physarum polycephalum and Badhamia utricularis fight...

Citations

Article
This research addresses the interactions between the unicellular slime mold Physarum polycephalum and a red yeast in a spatial ecosystem over week-long imaging experiments. An inverse relationship between the growth rates of both species is shown, where P. polycephalum has positive growth when the red yeast has a negative growth rate and vice versa. The data also captures successional and oscillatory dynamics between both species. An advanced image analysis methodology for semantic segmentation is used to quantify population density over time, for all components of the ecosystem. We suggest that P. polycephalum is capable of exhibiting a sustainable feeding strategy by depositing a nutritive slime trail, allowing yeast to serve as a periodic food source. This opens a new direction of P. polycephalum research, where the population dynamics of spatial ecosystems can be readily quantified and complex ecological dynamics can be studied.