Table 1 - uploaded by Somporn Tanskul
Content may be subject to copyright.
Comparison of the characteristics of Rhodopseudomonas palustris and CH12 strain Characteristics Rhodopseudomonas palustris* CH12 strain

Comparison of the characteristics of Rhodopseudomonas palustris and CH12 strain Characteristics Rhodopseudomonas palustris* CH12 strain

Source publication
Article
Full-text available
This study aimed to screen purple non-sulfur bacteria capable of accumulating granules or polyhydroxybutyrate (PHB) inside the cells, identify the potent strain, assay the enzyme or PHA synthase, and compare the PHB synthase gene with that of related strains. A total of 58 strains of purple non-sulfur bacteria were isolated from 108 samples of chic...

Contexts in source publication

Context 1
... CH12 strain was identified as Rhodopseudomonas palustris (Rps. palustris) strain NCIB8288 based on the taxonomic characteristics (Table 1) and 16S rDNA sequence analysis ( Figure 1). +, positive; -, negative; +, positive in some strains but negative in other strains; ND, not determined. ...
Context 2
... J., Uberlândia, v. 32, n. 5, p. 1341-1351, Sept./ Oct. 2016 aagtcagagg tgaaagcctg gagctcaact ccagaactgc ctttgatact ggaagtcttg agtatggcag aggtgagtgg aactgcgagt gtagaggtga aattcgtaga tattcgcaag aacaccagtg gcgaaggcgg ctcactgggc cattactgac gctgaggcac gaaagcgtgg ggagcaaaca ggattagata ccctggtagt ccacgccgta aacgatgaat gccagccgtt agtgggttta ctcactagtg gcgcagctaa cgctttaagc attccgcctg gggagtacgg tcgcaagatt aaaactcaaa ggaattgacg ggggcccgca caagcggtgg agcatgtggt ttaattcgac gcaacgcgca gaaccttacc agcccttgac atgtccagga ccggtcgcag agacgcgacc ttctcttcgg agcctggagc acaggtgctg catggctgtc gtcagctcgt gtcgtgagat gttgggttaa gtcccgcaac gagcgcaacc cccgtcctta gttgcta Figure 1. 16S rDNA sequence of CH12 ...
Context 3
... Uberlândia, v. 32, n. 5, p. 1341-1351, Sept./Oct. 2016 ************* *********** * ***** ***** * ***** ** ** * * A53 TTCATCAAATGGTGCGTCGACCAGGGGCTCACCGTGTTCGTGATCTCCTGGGTCAATCCG 891 BisB18 TTCGTCAAATGGTGCGTCGACCAGGGCGTCACGGTGTTCGTGATCTCCTGGGTCAATCCC 894 TIE-1 TTCATCAAATGGTGCGTCGACCAGGGCCTCACCGTGTTCGTGATCTCCTGGGTCAACCCG 894 CGA009 TTCATCAAATGGTGCGTCGACCAGGGCCTCACCGTGTTCGTGATCTCCTGGGTCAACCCG 894 HaA2 TTCATCAAATACTGCGTCGACCAGGGTCTCACCGTGTTCGTGATCTCCTGGGTCAATCCC 894 *** ****** ************** **** *********************** ** ...
Context 4
... ** ** **** **** ************ * ** ************ A53 ATGGATGTGATCGAAACGATCACCGGCGAGATGAAGGTGCACACGCTCGGCTATTGCGTC 1011 BisB18 ATGGACGTCATCGAACAGGTCACCGGCGAGATGAAGGTGCACACCATCGGCTACTGCGTC 1014 TIE-1 ATGGACGTCGTCGAGAAGGTCACCGGCGAGATGAAGGTCCACACGCTGGGCTACTGCGTC 1014 CGA009 ATGGACGTCGTCGAGAAGGTCACCGGCGAGATGAAGGTCCACACGCTGGGCTACTGCGTC 1014 HaA2 ATGGACGTGATCGAGAAGGTCACCGGCGAGCTGAAGGTGCACACCATCGGCTATTGCGTC 1014 ***** ** **** * *********** ******* ***** * ***** ****** ...
Context 5
... Uberlândia, v. 32, n. 5, p. 1341-1351, Sept./Oct. 2016 ***** ***** * ** ***** ** ** ** ****** ********** * ** * A53 TTCGTCGACGAGGAGCAGATCGCGGCGCTGGAGCAGGAGATGAAGTCTGTCGGCGTGCTC 1191 BisB18 TTCGTCGACGAGGATCAGATCGCCGCGTTGGAGCGCGAGATGCAGGCCAGCGGCGTGCTG 1194 TIE-1 TTCGTCGACGAGGAGCAGATTTCCGCGGTCGAACGCGAGATGAAGGTCACCGGCGTGCTC 1194 CGA009 TTCGTCGACGAGGAGCAGATTTCCGCGGTCGAACGCGAGATGAAGGTCACCGGCGTGCTC 1194 HaA2 TTCGTCGACGAGGGCCAGATCTCGGCGCTGGAGCGCGACATGCAGACGACCGGCGTGCTC 1194 ************* ***** * *** * ** * ** *** ** ********* A53 GAGGGCTCCAAGATGGCGATGGCCTTCAACATGCTGCGCTCGAACGACCTGATCTGGTCC 1251 BisB18 GAAGGCTCGAAGATGGCGATGGCCTTCAACATGCTGCGCTCCAACGACCTGATCTGGTCC 1254 TIE-1 GAAGGCGCCAAGATGGCGATGGCCTTCAACATGCTGCGGCCGAACGATCTGATCTGGTCC 1254 CGA009 GAAGGCGCCAAGATGGCGATGGCCTTCAACATGCTGCGGCCGAACGATCTGATCTGGTCC 1254 HaA2 GAAGGCGCCAGGATGGCGATGGCGTTCAACATGCTGCGGTCGAACGACCTGATCTGGTCC 1254 ** *** * * ************ ************** * ***** *********** * A53 TACGTCGTCAATAACTACCTGAAGGGCAAGTCGCCCTCGCCCTTCGACCTGCTGCACTGG 1311 BisB18 TATGTGGTCAATAACTATCTGAAGGGCCAGCCGCCGTCGGCGTTCGACCTGTTGCACTGG 1314 TIE-1 TACGTCGTCAATAACTACCTGAAGGGCCAGCCGCCGCAGGCGTTCGACCTGCTGCACTGG 1314 CGA009 TACGTCGTCAACAACTACCTGAAGGGACAGCCGCCGCAGGCGTTCGACCTGCTGCACTGG 1314 HaA2 TATGTGGTCAGCAACTATCTGAAGGGCCAGCCGCCCGCCGCGTTCGACCTGCTGCACTGG 1314 ** ** **** ***** ******** ** **** * ********* ******** Figure 4. Multiple sequence alignment of phaC gene of Rhodopseudomonas palustris strains: ...
Context 6
... Uberlândia, v. 32, n. 5, p. 1341-1351, Sept./Oct. 2016 ***** ***** * ** ***** ** ** ** ****** ********** * ** * A53 TTCGTCGACGAGGAGCAGATCGCGGCGCTGGAGCAGGAGATGAAGTCTGTCGGCGTGCTC 1191 BisB18 TTCGTCGACGAGGATCAGATCGCCGCGTTGGAGCGCGAGATGCAGGCCAGCGGCGTGCTG 1194 TIE-1 TTCGTCGACGAGGAGCAGATTTCCGCGGTCGAACGCGAGATGAAGGTCACCGGCGTGCTC 1194 CGA009 TTCGTCGACGAGGAGCAGATTTCCGCGGTCGAACGCGAGATGAAGGTCACCGGCGTGCTC 1194 HaA2 TTCGTCGACGAGGGCCAGATCTCGGCGCTGGAGCGCGACATGCAGACGACCGGCGTGCTC 1194 ************* ***** * *** * ** * ** *** ** ********* A53 GAGGGCTCCAAGATGGCGATGGCCTTCAACATGCTGCGCTCGAACGACCTGATCTGGTCC 1251 BisB18 GAAGGCTCGAAGATGGCGATGGCCTTCAACATGCTGCGCTCCAACGACCTGATCTGGTCC 1254 TIE-1 GAAGGCGCCAAGATGGCGATGGCCTTCAACATGCTGCGGCCGAACGATCTGATCTGGTCC 1254 CGA009 GAAGGCGCCAAGATGGCGATGGCCTTCAACATGCTGCGGCCGAACGATCTGATCTGGTCC 1254 HaA2 GAAGGCGCCAGGATGGCGATGGCGTTCAACATGCTGCGGTCGAACGACCTGATCTGGTCC 1254 ** *** * * ************ ************** * ***** *********** * A53 TACGTCGTCAATAACTACCTGAAGGGCAAGTCGCCCTCGCCCTTCGACCTGCTGCACTGG 1311 BisB18 TATGTGGTCAATAACTATCTGAAGGGCCAGCCGCCGTCGGCGTTCGACCTGTTGCACTGG 1314 TIE-1 TACGTCGTCAATAACTACCTGAAGGGCCAGCCGCCGCAGGCGTTCGACCTGCTGCACTGG 1314 CGA009 TACGTCGTCAACAACTACCTGAAGGGACAGCCGCCGCAGGCGTTCGACCTGCTGCACTGG 1314 HaA2 TATGTGGTCAGCAACTATCTGAAGGGCCAGCCGCCCGCCGCGTTCGACCTGCTGCACTGG 1314 ** ** **** ***** ******** ** **** * ********* ******** Figure 4. Multiple sequence alignment of phaC gene of Rhodopseudomonas palustris strains: ...

Citations

... However, while biohydrogen production using PNSB has received significant attention (Ismail et al. 2008;Carlozzi and Lambardi 2009;Laurinavichene et al. 2018), this review focuses specifically on PNSB application for PHA production. Given the recent and rapidly growing research in this area (Tanskul et al. 2016;Padovani et al. 2018;Fradinho et al. 2019;Higuchi-Takeuchi and Numata 2019), this manuscript explores the potential and bottlenecks for PHA production using PNSB within the fermentation process. Aspects related to biomass harvesting and PHA extraction, which are less specific to PNSB and well-covered elsewhere (Molina Grima et al. 2003;Christenson and Sims 2011;Anis et al. 2013;Villano et al. 2014;Samorì et al. 2015) are beyond the scope of this review. ...
... Most PNSB thrive in environments with mesophilic temperatures and neutral pH. However, a number of PNSB genera have the ability to withstand environments with extreme temperatures, varying pH and elevated salinity, provided that the environment is anoxygenic or microaerobic (Tanskul et al. 2016). For instance, PNSB have been isolated from thermal springs and alkaline lakes at temperatures beyond 50°C (Favinger et al. 1989;Imhoff et al. 2005;Kumar et al. 2013). ...
Article
Full-text available
Polyhydroxyalkanoates (PHA) are a group of biopolymers produced naturally by microorganisms with properties similar to various petroleum-based plastics. However, to date their commercial production has remained uncompetitive due to substrate, sterilization, aeration and processing costs. Purple non-sulfur bacteria (PNSB) are a group of anoxygenic photoheterotrophic bacteria that have the ability to accumulate PHA under unbalanced conditions in anaerobic environments and constant feeding with high conversion ratios. Such characteristics could potentially overcome some of the bottlenecks of conventional chemoheterotrophic PHA production. Yet these organisms have received relatively limited attention. This review explores the factors involved in the PHA accumulation process from PNSB, highlighting the differences to conventional PHA production and the areas yet to be optimized. The roles of fermentation systems, carbon substrate, feeding conditions, nutrients, pH and various aspects of light are reviewed to understand their role in PHA accumulation in PNSB.
... Among anoxygenic phototrophs, PHA was first identified in the purple non-sulfur bacteria -Rhodospirillum rubrum [121]. However, apart from PNSB, they are also formed in PSB and aerobic anoxygenic phototrophs [120,122,123]. ...
Article
Full-text available
Anoxygenic phototrophic bacteria (APB) are a phylogenetically diverse group of organisms that can harness solar energy for their growth and metabolism. These bacteria vary broadly in terms of their metabolism as well as the composition of their photosynthetic apparatus. Unlike oxygenic phototrophic bacteria such as algae and cyanobacteria, APB can use both organic and inorganic electron donors for light-dependent fixation of carbon dioxide without generating oxygen. Their versatile metabolism, ability to adapt in extreme conditions, low maintenance cost and high biomass yield make APB ideal for wastewater treatment, resource recovery and in the production of high value substances. This review highlights the advantages of APB over algae and cyanobacteria, and their applications in photo-bioelectrochemical systems, production of poly-β-hydroxyalkanoates, single-cell protein, biofertilizers and pigments. The ecology of ABP, their distinguishing factors, various physiochemical parameters governing the production of high-value substances and future directions of APB utilization are also discussed.