Collaborative practice model for monitoring and care of HSCT-TMA. Advanced practice providers and pharmacists contribute to many aspects of patient care in transplant centers, including medication management for complex regimens; transplant education for patients, staff, and trainees; evidence-based protocol and clinical guideline development; assessment and reporting of transplant-related outcomes; and quality improvement initiatives. HSCT-TMA is a severe and potentially life-threatening complication that is often underdiagnosed. The collaboration of a multidisciplinary team of advanced practice providers, pharmacists, and physicians can optimize recognition, diagnosis, management, and monitoring of patients with HSCT-TMA, thereby improving outcomes for these patients.

Collaborative practice model for monitoring and care of HSCT-TMA. Advanced practice providers and pharmacists contribute to many aspects of patient care in transplant centers, including medication management for complex regimens; transplant education for patients, staff, and trainees; evidence-based protocol and clinical guideline development; assessment and reporting of transplant-related outcomes; and quality improvement initiatives. HSCT-TMA is a severe and potentially life-threatening complication that is often underdiagnosed. The collaboration of a multidisciplinary team of advanced practice providers, pharmacists, and physicians can optimize recognition, diagnosis, management, and monitoring of patients with HSCT-TMA, thereby improving outcomes for these patients.

Source publication
Article
Full-text available
Hematopoietic stem cell transplantation-associated thrombotic microangiopathy (HSCT-TMA) is a severe and potentially life-threatening complication. HSCT-TMA is often underdiagnosed due to multifactorial pathophysiology and a historic lack of standard diagnostic criteria. Identification of the multi-hit hypothesis and the key role of the complement...

Context in source publication

Context 1
... topic, particularly as ongoing studies of targeted therapies are completed, and new therapies are approved for this indication. To improve the prognosis and outcomes for patients with HSCT-TMA, APPs and pharmacists must take a leading role in the early recognition, diagnosis, and development of evidence-based treatment plans for these patients (Fig. ...

Citations

... No treatment guidelines are available for the management of HSCT-TMA. Historically, several treatment approaches have been investigated for HSCT-TMA, including the discontinuation of CNIs, therapeutic plasma exchange, defibrotide, immunosuppressant agents, and rituximab, with various outcomes for patients [39]. Eculizumab (C5 complement inhibitor) has been shown to be efficient and safe in HSCT-TMA [40,41]. ...
Article
Full-text available
Hematopoietic stem cell transplantation (HSCT) remains a cornerstone in the management of patients with hematological malignancies. Endothelial injury syndromes, such as HSCT-associated thrombotic microangiopathy (HSCT-TMA), veno-occlusive disease/sinusoidal obstruction syndrome (SOS/VOD), and capillary leak syndrome (CLS), constitute complications after HSCT. Moreover, endothelial damage is prevalent after immunotherapy with chimeric antigen receptor-T (CAR-T) and can be manifested with cytokine release syndrome (CRS) or immune effector cell-associated neurotoxicity syndrome (ICANS). Our literature review aims to investigate the genetic susceptibility in endothelial injury syndromes after HSCT and CAR-T cell therapy. Variations in complement pathway- and endothelial function-related genes have been associated with the development of HSCT-TMA. In these genes, CFHR5, CFHR1, CFHR3, CFI, ADAMTS13, CFB, C3, C4, C5, and MASP1 are included. Thus, patients with these variations might have a predisposition to complement activation, which is also exaggerated by other factors (such as acute graft-versus-host disease, infections, and calcineurin inhibitors). Few studies have examined the genetic susceptibility to SOS/VOD syndrome, and the implicated genes include CFH, methylenetetrahydrofolate reductase, and heparinase. Finally, specific mutations have been associated with the onset of CRS (PFKFB4, CX3CR1) and ICANS (PPM1D, DNMT3A, TE2, ASXL1). More research is essential in this field to achieve better outcomes for our patients.
... This heightened complement activation ultimately results in the production of microthrombi, as indicated by hit 3. This well-established hyperactivation of the complement system is also supported by research studies which have shown mounting evidence that inhibiting the C5 level of the complement system with eculizumab-approved for use in aHUS-is effective in many HSCT-TMA patients, leading to better overall response and survival rates [23,24]. However, today, there is no approved targeted therapy available, and there are several ongoing trials investigating complement inhibitors [25][26][27][28] as potential treatments in both adult and pediatric patients with HSCT-TMA. ...
Article
Full-text available
Hematopoietic stem cell transplantation-associated thrombotic microangiopathy (HSCT-TMA) and graft-versus-host disease (GvHD) represent life-threatening syndromes after allogeneic hematopoietic stem cell transplantation (allo-HSCT). In both conditions, endothelial dysfunction is a common denominator, and development of relevant biomarkers is of high importance for both diagnosis and prognosis. Despite the fact that soluble urokinase plasminogen activator receptor (suPAR) and growth differentiation factor-15 (GDF-15) have been determined as endothelial injury indices in various clinical settings, their role in HSCT-related complications remains unexplored. In this context, we used immunoenzymatic methods to measure suPAR and GDF-15 levels in HSCT-TMA, acute and/or chronic GVHD, control HSCT recipients, and apparently healthy individuals of similar age and gender. We found considerably greater SuPAR and GDF-15 levels in HSCT-TMA and GVHD patients compared to allo-HSCT and healthy patients. Both GDF-15 and suPAR concentrations were linked to EASIX at day 100 and last follow-up. SuPAR was associated with creatinine and platelets at day 100 and last follow-up, while GDF-15 was associated only with platelets, suggesting that laboratory values do not drive EASIX. SuPAR, but not GDF-15, was related to soluble C5b-9 levels, a sign of increased HSCT-TMA risk. Our study shows for the first time that suPAR and GDF-15 indicate endothelial damage in allo-HSCT recipients. Rigorous validation of these biomarkers in many cohorts may provide utility for their usefulness in identifying and stratifying allo-HSCT recipients with endothelial cell impairment.
Article
Full-text available
Transplantation-associated thrombotic microangiopathy (TA-TMA) is a well-recognized serious complication of hematopoietic stem cell transplantation (HSCT). The understanding of TA-TMA pathophysiology has expanded in recent years. Dysregulation of the complement system is thought to cause endothelial injury and, consequently, microvascular thrombosis and tissue damage. TA-TMA can affect multiple organs, and each organ exhibits specific features of injury. Central nervous system (CNS) manifestations of TA-TMA include posterior reversible encephalopathy syndrome, seizures, and encephalopathy. The development of neurological dysfunction is associated with a significantly lower overall survival in patients with TA-TMA. However, there are currently no established histopathological or radiological criteria for the diagnosis of CNS TMA. Patients who receive total body irradiation (TBI), calcineurin inhibitors (CNI), and severe acute and chronic graft-versus-host disease (GVHD) are at a high risk of experiencing neurological complications related to TA-TMA and should be considered for directed TA-TMA therapy. However, the incidence and clinical manifestations of TA-TMA neurotoxicity remain unclear. Studies specifically examining the involvement of CNS in TMA syndromes are limited. In this review, we discuss clinical manifestations and imaging abnormalities in patients with nervous system involvement in TA-TMA. We summarize the mechanisms underlying TA-TMA and its neurological complications, including endothelial injury, evidence of complement activation, and treatment options for TA-TMA.
Chapter
Full-text available
Haematopoietic cell transplantation (HCT) is undoubtedly one of the most challenging and complex forms of treatment for malignant and non-malignant blood disorders as well as autoimmune disease. As a result, nursing in the field of HCT and cellular therapy offers a wealth of opportunities to make a positive difference to patient experience through high-quality specialist nursing care and the unique role of nursing within the transplant MDT. In this section, we will describe the nursing roles that surround the patient pathway and offer an overview the particular aspects of patient care that they encompass.
Article
Purpose of review The purpose of this review is to highlight the importance of a multidisciplinary thrombotic microangiopathies (TMA) Team. This goal will be accomplished through review of the complement system, discuss various causes of thrombotic microangiopathies (TMA), and aspects of their diagnosis and management. In so doing, readers will gain an appreciation for the complexity of this family of disorders and realize the benefit of a dedicated multidisciplinary TMA Team. Recent findings TMA causes derive from multiple specialty areas, are difficult to timely recognize, pose complex challenges, and require multidisciplinary management. Hematopoietic stem cell transplant-associated TMA (TA-TMA) and TA-TMA related multiorgan dysfunction syndrome (TA-TMA MODS) are areas of burgeoning research; use of complement testing and eculizumab precision-dosing has been found to better suppress complement activity in TA-TMA than standard eculizumab dosing. Newer tests are available to risk-stratify obstetric patients at risk for severe pre-eclampsia, whose features resemble those of TA-TMA MODS. Numerous disorders may produce TMA-like findings, and a systematic approach aids in their identification. TMA Teams elevate institutional awareness of increasingly recognized TMAs, will help expedite diagnostic and therapeutic interventions, and create pathways to future TMA-related research and facilitate access to clinical trials. Summary Establishment of a TMA-Team is valuable in developing the necessary institutional expertise needed to promptly recognize and appropriately manage patients with TMA.