Fig 4 - uploaded by Pedro W Crous
Content may be subject to copyright.
Cladosporium silenes (CBS H-19874). A. Ascomata on host tissue (arrows). B. Asci. c. Ascospores (arrow denotes mucoid appendage; A-C from Bensch et al. 2010). d-F. Conidiophores with conidial chains. Bars = 10 µm.

Cladosporium silenes (CBS H-19874). A. Ascomata on host tissue (arrows). B. Asci. c. Ascospores (arrow denotes mucoid appendage; A-C from Bensch et al. 2010). d-F. Conidiophores with conidial chains. Bars = 10 µm.

Source publication
Article
Full-text available
Species in the present study were compared based on their morphology, growth characteristics in culture, and DNA sequences of the nuclear ribosomal RNA gene operon (including ITS1, ITS2, 5.8S nrDNA and the first 900 bp of the 28S nrDNA) for all species and partial actin and translation elongation factor 1-alpha gene sequences for Cladosporium speci...

Similar publications

Technical Report
Full-text available
Most of the trees examined in this report are native Eucalyptus species and are growing on the Council road verge (see Figs. 2,4,5). One tree Grevillea robusta (Tree 7) and Tree 19 (Eucalyptus tereticornis) are within the proposed developmental area. Many of the trees are over 25 cm in trunk diameter and this have a reasonably high TPZ and SRZ. Tr...
Article
Full-text available
Interactions among plant species via pollinators vary from competitive to mutualistic and can influence the probability of stable coexistence of plant species. We aimed to determine the nature of the interaction via flower visitors between Leucospermum conocarpodendron and Mimetes fimbriifolius , two shrubs in the Proteaceae that share many ecologi...
Article
Full-text available
SUMMARY The objective of this work was to analyze an experiment of thinning modalities with Grevillea robusta A. installed in complete random blocks with 2 levels of intensity and witnesses and 3 of opportunity in 3 repetitions. The intensity treatments were defined by the basal area, and characterized in: without thinning (witness) and 20 and 40 %...
Article
Full-text available
Windbreaks of Grevillea robusta A. Cunn. are being used in Brazil to protect tillage, specially in Parana state. In order to evaluate the performance of this species as windbreaks, this study involved five different barriers and their effects on wind velocity, soil moisture and coffee production. It was concluded that there is a very good effect be...

Citations

... Sphaerulina was traditionally distinguished from Mycosphaerella on the basis that the latter has 1-septate ascospores. However, the number of ascospore septa was shown to be an unstable criterion at the generic level in ascomycetes (Crous et al. 2003(Crous et al. , 2011. On the other hand, the morphology of the asexual morphs of Sphaerulina is recognised as belonging to Septoria sensu lato (s.l.) or being septoria-like, belonging to Mycosphaerellaceae ). ...
Article
Full-text available
Sphaerulina species are plant pathogenic fungi causing leaf spot diseases of various hosts, including arboreous and herbaceous plants. The morphological characteristics of their asexual morphs and leaf spot symptoms are like those of Septoria spp. Due to their similar morphology, species of Sphaerulina have largely been subsumed under Septoria s. lat. A recent revision of the genus Septoria based on morphological characteristics and phylogenetic relationships resulted in the separation of Sphaerulina from Septoria. This study reveals the diversity of the genus Sphaerulina in Japan, and the species relationships based on a multigene phylogenetic analysis. Moreover, results of our phylogenetic analysis revealed seven novel species (Sph. farfugii, Sph. hydrangeicola, Sph. idesiae, Sph. lapsanastri, Sph. miurae, Sph. styracis, and Sph. viburnicola) which are described, and two species (Sep. duchesnea and Sep. nambuana) which are transferred to the genus Sphaerulina.
... Agapanthus is known to host several endophytic fungi, some of which are phytopathogenic, and have been introduced, along with its host, to multiple continents. For example, Teratosphaeria agapanthi, originally described from South Africa in 1880 (as Sphaerella agapanthi), was recently reported from Portugal (Crous et al. 2011), as well as Australia, La Réunion, and the USA (Crous et al. 2020). Of note was the fact that F. agapanthi was placed as a monotypic lineage in the American clade of the Fusarium fujikuroi species complex (Edwards et al. 2016), which posed the question, "Did the pathogen simply jump onto Agapanthus, or could it have been introduced along with its host from South Africa?" ...
Article
Full-text available
Fusarium agapanthi is newly reported from the centre of origin of Agapanthus in South Africa, where it is associated with dead flower stalks of Agapanthus praecox. Mjuua agapanthi, a rare hyphomycete with a morphology corresponding to asexual morphs of Pyxidiophora, was isolated as mycoparasitic on F. agapanthi, along with bacteria that co-occurred in synnematal heads of M. agapanthi. Germinating conidia of M. agapanthi were observed to parasitise germinating conidia of F. agapanthi. Although M. agapanthi could not be cultivated on its own, the association with Fusarium proved to not be restricted to F. agapanthi, as it could also be cultivated with other Fusarium spp. Mjuua agapanthi is a member of Pyxidiophorales, an order of obligate insect parasitic microfungi. The exact role of the bacteria in synnematal heads of M. agapanthi remains to be further elucidated, although one bacterium, Alsobacter metallidurans, appeared to cause lysis of the synnematal conidial cell walls. This discovery suggests that many unculturable obligate biotrophic microbes can probably be cultivated if co-cultivated with their respective hosts.
... Crous et al. (2007a) introduced Teratosphaeriaceae to accommodate Teratosphaeria (with a Readeriella-like asexual morph) and 11 asexual genera. The family comprises around 60 genera and represents one of the largest families in Dothideomycetes (Crous et al. 2011c;Wijayawardene et al. 2022). The members of the family are saprobes, plant and human pathogens, rock-inhabiting, and endophytes (Crous et al. 2009a(Crous et al. ,b, 2011aEgidi et al. 2014;Quaedvlieg et al. 2014). ...
Article
Full-text available
This article revises the documented diversity of known marine fungi from nine phyla, 33 classes, 107 orders, 273 families, 767 genera and 1898 species reported worldwide. A member of the Aphelidiomycota, Pseudaphelidium drebesii, is reported for the first time from the marine environment, on a diatom. Likewise, the phylum Mortierellomycota is listed following taxonomic changes, as are six subclasses: Chaetothyriomycetidae, Savoryellomycetidae, Sclerococcomycetidae, Agaricostilbomycetidae, Auriculariomycetidae and Aphelidiomycotina. Thirty-three orders and 105 family names with marine species are added to the checklist, along with 641 species in 228 genera, bringing the total to 1898. New additions of species added to the list of marine fungi are highlighted. Four new combinations are proposed: Stigmatodiscus mangrovei, Diaporthe krabiensis and Diaporthe xylocarpi, while the hyphomycete Humicola alopallonella is referred to the genus Halosphaeriopsis, as Halosphaeriopsis alopallonella.
... The high disease incidence may also be attributed to the influence of weather. Theinfluences of weather on the pathogen resulting in high disease incidence havealso been reported by (Meena et al., 2010). Similarly, severity of sigatoka leafspot disease on leaves was positively correlated to environmental factors w hichw ere favourable to disease development (Chattopadhyay et al. 2005). ...
... Members of the Mycosphaerella complex are ecologically highly adaptable and vary from being saprobic to fungicolous. This complex also includes numerous destructive plant pathogens with a global impact (Crous et al., 2011). Although plant pathogenic Mycosphaerella are historically regarded as host specific, no general rule can be applied here (Verkley and Priest, 2000;Crous, 2009). ...
Article
Fungal endophytes were isolated from 250 asymptomatic leaf petioles of Fraxinus excelsior collected from trees showing symptoms of ash dieback in five forest sites in southern Poland. Fungal isolations yielded 1646 colonies representing 97 taxa, including 92 Ascomycota and 5 Basidiomycota species. The most common Ascomycota comprised Nemania serpens (38.0% of colonized petioles), Diaporthe eres (33.6%), Venturia fraxini (26.4%), Diaporthe sp. 1 (20.4%), Alternaria sp. 1 (14.8%), Colletotrichum acutatum (14.8%), Nemania diffusa (14.0%), Colletotrichum gloeosporioides (12.4%) and Colletotrichum sp. (12.4%). The occurrence of all these taxa except Alternaria sp. 1 was significantly different between the studied forest sites. Two yeast species, Vishniacozyma foliicola (4.8%) and Cystobasidium pinicola (2.8%), dominated among the Basidiomycota endophytes detected. All the fungal endophytes were tested in dual culture antagonistic assays against two strains of Hymenoscyphus fraxineus, resulting in the development of four interaction types. The interactions included the physical contact of co-partners’ mycelia (41.8%), development of an inhibition zone (47.4%), growth of endophyte mycelia over H. fraxineus colonies (9.3%) and growth of H. fraxineus mycelia over endophyte colonies (1.5%). The strongest antibiotic activity against H. fraxineus, measured by the width of the inhibition zone, was observed for Cytospora pruinosa, Fusarium lateritium, Phoma sp. 2, Pleosporales sp. 2 and Thielavia basicola. A variety of morphophysiological deformations of H. fraxineus hyphae were observed under endophyte pressure: spiral twist of the hyphae, formation of cytoplasmic extrusions, development of torulose hyphae and excessive lateral branching of the hyphae. The strongest antagonistic effects, coupled with the potential to overgrow H. fraxineus colonies, was shown by Clonostachys rosea, Nemania diffusa, N. serpens, Peniophora cinerea, Rosellinia corticium and Xylaria polymorpha. Some of these species were able to attack H. fraxineus hyphae in a mycoparasitic manner. The antagonistic activities included the physical penetration of H. fraxineus hyphae, dissolution of hyphal cell walls, disappearance of pigmentation, disintegration of hyphae and degradation of other fungal structures. In contrast, one of the most commonly detected endophytes in ash leaves, Venturia fraxini, did not show in vitro antagonistic potential against H. fraxineus. Finally, we discuss the potential of the detected fungal endophytes to combat H. fraxineus invasion, the cause of ash decline in Europe.
... Some diseases are responsible for significant losses in the production of bananas and plantains, notably black Sigatoka, caused by Pseudocercospora fijiensis (sexual form: Mycosphaerella fijiensis) [5]. This fungus was described in 1963 on the islands of Fiji [6]. ...
Article
Full-text available
Black Sigatoka, a disease caused by the fungus Pseudocercospora fijiensis, can lead to the complete loss of banana and plantain production in the absence of chemical control. The development of resistant cultivars is the focus of many banana breeding programs and is an alternative to the use of fungicides. In order to define a refined method of selection in genetic breeding programs, this study evaluated 23 improved diploids, seven tetraploids, and two commercial cultivars in the presence of P. fijiensis. Four selection criteria were considered: means of the disease severity index (ID) and area under the disease progress curve (AUDPC) estimated over the total period of the experiment, only in summer, only in winter, and the emission and harvesting of bunches. The selection of genotypes was more effective in the winter, and the evaluation of four leaves no. 3 emitted after six months of growth was efficient at differentiating the resistant and susceptible genotypes. For the improved diploids and tetraploid hybrids, DI varied from 0.0 to 48.8 and from 15.1 to 63.5, respectively, and the AACPD for the improved hybrids and tetraploid hybrids varied from 0.0 to 2439.5 and 1000.2 to 3717.7, respectively. The tetraploid hybrid of the Prata-type CNPMF0906 and the commercial cultivar, which is a hybrid of the BRS Princesa Silk type, showed quantitative resistance and can be used by banana producers. Results suggest that the guidelines adopted for the selection of genotypes resistant to black Sigatoka may include methodologies that reduce the evaluation time. In addition, new sources of resistance to the disease and the influence of its genetic inheritance in future crosses were found.
... On MEA, PDA and OA surface and reverse olivaceous grey. Notes -Teratosphaeria combreti is related to T. agapanthi (on Agapanthus spp., ascospores (17-)18 -20(-21) × 4.5 -5 (-6) μm; Crous et al. 2011Crous et al. , 2020b. Both species occur on host plants indigenous to South Africa. ...
Article
Full-text available
Novel species of fungi described in this study include those from various countries as follows: Algeria, Phaeoacremonium adelophialidum from Vitis vinifera. Antarctica, Comoclathris antarctica from soil. Australia, Coniochaeta salicifolia as endophyte from healthy leaves of Geijera salicifolia, Eremothecium peggii in fruit of Citrus australis, Microdochium ratticaudae from stem of Sporobolus natalensis, Neocelosporium corymbiae on stems of Corymbia variegata, Phytophthora kelmanii from rhizosphere soil of Ptilotus pyramidatus, Pseudosydowia backhousiae on living leaves of Backhousia citriodora, Pseudosydowia indooroopillyensis, Pseudosydowia louisecottisiae and Pseudosydowia queenslandica on living leaves of Eucalyptus sp. Brazil, Absidia montepascoalis from soil. Chile, Ilyonectria zarorii from soil under Maytenus boaria. Costa Rica, Colletotrichum filicis from an unidentified fern. Croatia, Mollisia endogranulata on deteriorated hardwood. Czech Republic, Arcopilus navicularis from tea bag with fruit tea, Neosetophoma buxi as endophyte from Buxus sempervirens, Xerochrysium bohemicum on surface of biscuits with chocolate glaze and filled with jam. France, Entoloma cyaneobasale on basic to calcareous soil, Fusarium aconidiale from Triticum aestivum, Fusarium juglandicola from buds of Juglans regia. Germany, Tetraploa endophytica as endophyte from Microthlaspi perfoliatum roots. India, Castanediella ambae on leaves of Mangifera indica, Lactifluus kanadii on soil under Castanopsis sp., Penicillium uttarakhandense from soil. Italy, Penicillium ferraniaense from compost. Namibia, Bezerromyces gobabebensis on leaves of unidentified succulent, Cladosporium stipagrostidicola on leaves of Stipagrostis sp., Cymostachys euphorbiae on leaves of Euphorbia sp., Deniquelata hypolithi from hypolith under a rock, Hysterobrevium walvisbayicola on leaves of unidentified tree, Knufia hypolithi and Knufia walvisbayicola from hypolith under a rock, Lapidomyces stipagrostidicola on leaves of Stipagrostis sp., Nothophaeotheca mirabibensis (incl. Nothophaeotheca gen. nov.) on persistent inflorescence remains of Blepharis obmitrata, Paramyrothecium salvadorae on twigs of Salvadora persica, Preussia procaviicola on dung of Procavia sp., Sordaria equicola on zebra dung, Volutella salvadorae on stems of Salvadora persica. Netherlands, Entoloma ammophilum on sandy soil, Entoloma pseudocruentatum on nutrient poor (acid) soil, Entoloma pudens on plant debris, amongst grasses. New Zealand, Amorocoelophoma neoregeliae from leaf spots of Neoregelia sp., Aquilomyces metrosideri and Septoriella callistemonis from stem discolouration and leaf spots of Metrosideros sp., Cadophora neoregeliae from leaf spots of Neoregelia sp., Flexuomyces asteliae (incl. Flexuomyces gen. nov.) and Mollisia asteliae from leaf spots of Astelia chathamica, Ophioceras freycinetiae from leaf spots of Freycinetia banksii, Phaeosphaeria caricis-sectae from leaf spots of Carex secta. Norway, Cuphophyllus flavipesoides on soil in semi-natural grassland, Entoloma coracis on soil in calcareous Pinus and Tilia forests, Entoloma cyaneolilacinum on soil semi-natural grasslands, Inocybe norvegica on gravelly soil. Pakistan, Butyriboletus parachinarensis on soil in association with Quercus baloot. Poland, Hyalodendriella bialowiezensis on debris beneath fallen bark of Norway spruce Picea abies. Russia, Bolbitius sibiricus on а moss covered rotting trunk of Populus tremula, Crepidotus wasseri on debris of Populus tremula, Entoloma isborscanum on soil on calcareous grasslands, Entoloma subcoracis on soil in subalpine grasslands, Hydropus lecythiocystis on rotted wood of Betula pendula, Meruliopsis faginea on fallen dead branches of Fagus orientalis, Metschnikowia taurica from fruits of Ziziphus jujube, Suillus praetermissus on soil, Teunia lichenophila as endophyte from Cladonia rangiferina. Slovakia, Hygrocybe fulgens on mowed grassland, Pleuroflammula pannonica from corticated branches of Quercus sp. South Africa, Acrodontium burrowsianum on leaves of unidentified Poaceae, Castanediella senegaliae on dead pods of Senegalia ataxacantha, Cladophialophora behniae on leaves of Behnia sp., Colletotrichum cliviigenum on leaves of Clivia sp., Diatrype dalbergiae on bark of Dalbergia armata, Falcocladium heteropyxidicola on leaves of Heteropyxis canescens, Lapidomyces aloidendricola as epiphyte on brown stem of Aloidendron dichotomum, Lasionectria sansevieriae and Phaeosphaeriopsis sansevieriae on leaves of Sansevieria hyacinthoides, Lylea dalbergiae on Diatrype dalbergiae on bark of Dalbergia armata, Neochaetothyrina syzygii (incl. Neochaetothyrina gen. nov.) on leaves of Syzygium chordatum, Nothophaeomoniella ekebergiae (incl. Nothophaeomoniella gen. nov.) on leaves of Ekebergia pterophylla, Paracymostachys euphorbiae (incl. Paracymostachys gen. nov.) on leaf litter of Euphorbia ingens, Paramycosphaerella pterocarpi on leaves of Pterocarpus angolensis, Paramycosphaerella syzygii on leaf litter of Syzygium chordatum, Parateichospora phoenicicola (incl. Parateichospora gen. nov.) on leaves of Phoenix reclinata, Seiridium syzygii on twigs of Syzygium chordatum, Setophoma syzygii on leaves of Syzygium sp., Starmerella xylocopis from larval feed of an Afrotropical bee Xylocopa caffra, Teratosphaeria combreti on leaf litter of Combretum kraussii, Teratosphaericola leucadendri on leaves of Leucadendron sp., Toxicocladosporium pterocarpi on pods of Pterocarpus angolensis. Spain, Cortinarius bonachei with Quercus ilex in calcareus soils, Cortinarius brunneovolvatus under Quercus ilex subsp. ballota in calcareous soil, Extremopsis radicicola (incl. Extremopsis gen. nov.) from root-associated soil in a wet heathland, Russula quintanensis on acidic soils, Tubaria vulcanica on volcanic lapilii material, Tuber zambonelliae in calcareus soil. Sweden, Elaphomyces borealis on soil under Pinus sylvestris and Betula pubescens. Tanzania, Curvularia tanzanica on inflorescence of Cyperus aromaticus. Thailand, Simplicillium niveum on Ophiocordyceps camponoti-leonardi on underside of unidentified dicotyledonous leaf. USA, Calonectria californiensis on leaves of Umbellularia californica, Exophiala spartinae from surface sterilised roots of Spartina alterniflora, Neophaeococcomyces oklahomaensis from outside wall of alcohol distillery. Vietnam, Fistulinella aurantioflava on soil. Morphological and culture characteristics are supported by DNA barcodes.
... On MEA, PDA and OA surface and reverse olivaceous grey. Notes -Teratosphaeria combreti is related to T. agapanthi (on Agapanthus spp., ascospores (17-)18 -20(-21) × 4.5 -5 (-6) μm; Crous et al. 2011Crous et al. , 2020b. Both species occur on host plants indigenous to South Africa. ...
Article
Full-text available
Novel species of fungi described in this study include those from various countries as follows: Algeria , Phaeoacremonium adelophialidum from Vitis vinifera . Antarctica , Comoclathris antarctica from soil. Australia , Coniochaeta salicifolia as endophyte from healthy leaves of Geijera salicifolia , Eremothecium peggii in fruit of Citrus australis , Microdochium ratticaudae from stem of Sporobolus natalensis , Neocelosporium corymbiae on stems of Corymbia variegata , Phytophthora kelmanii from rhizosphere soil of Ptilotus pyramidatus , Pseudosydowia backhousiae on living leaves of Backhousia citriodora , Pseudosydowia indooroopillyensis , Pseudosydowia louisecottisiae and Pseudosydowia queenslandica on living leaves of Eucalyptus sp. Brazil , Absidia montepascoalis from soil. Chile , Ilyonectria zarorii from soil under Maytenus boaria . Costa Rica , Colletotrichum filicis from an unidentified fern. Croatia , Mollisia endogranulata on deteriorated hardwood. Czech Republic , Arcopilus navicularis from tea bag with fruit tea, Neosetophoma buxi as endophyte from Buxus sempervirens , Xerochrysium bohemicum on surface of biscuits with chocolate glaze and filled with jam. France , Entoloma cyaneobasale on basic to calcareous soil, Fusarium aconidiale from Triticum aestivum , Fusarium juglandicola from buds of Juglans regia . Germany , Tetraploa endophytica as endophyte from Microthlaspi perfoliatum roots. India , Castanediella ambae on leaves of Mangifera indica , Lactifluus kanadii on soil under Castanopsis sp., Penicillium uttarakhandense from soil. Italy , Penicillium ferraniaense from compost. Namibia , Bezerromyces gobabebensis on leaves of unidentified succulent, Cladosporium stipagrostidicola on leaves of Stipagrostis sp., Cymostachys euphorbiae on leaves of Euphorbia sp., Deniquelata hypolithi from hypolith under a rock, Hysterobrevium walvisbayicola on leaves of unidentified tree, Knufia hypolithi and Knufia walvisbayicola from hypolith under a rock, Lapidomyces stipagrostidicola on leaves of Stipagrostis sp., Nothophaeotheca mirabibensis (incl. Nothophaeotheca gen. nov.) on persistent inflorescence remains of Blepharis obmitrata , Paramyrothecium salvadorae on twigs of Salvadora persica , Preussia procaviicola on dung of Procavia sp., Sordaria equicola on zebra dung, Volutella salvadorae on stems of Salvadora persica . Netherlands , Entoloma ammophilum on sandy soil, Entoloma pseudocruentatum on nutrient poor (acid) soil, Entoloma pudens on plant debris, amongst grasses. New Zealand , Amorocoelophoma neoregeliae from leaf spots of Neoregelia sp., Aquilomyces metrosideri and Septoriella callistemonis from stem discolouration and leaf spots of Metrosideros sp., Cadophora neoregeliae from leaf spots of Neoregelia sp., Flexuomyces asteliae (incl. Flexuomyces gen. nov.) and Mollisia asteliae from leaf spots of Astelia chathamica , Ophioceras freycinetiae from leaf spots of Freycinetia banksii , Phaeosphaeria caricis-sectae from leaf spots of Carex secta . Norway , Cuphophyllus flavipesoides on soil in semi-natural grassland, Entoloma coracis on soil in calcareous Pinus and Tilia forests, Entoloma cyaneolilacinum on soil semi-natural grasslands, Inocybe norvegica on gravelly soil. Pakistan , Butyriboletus parachinarensis on soil in association with Quercus baloot . Poland , Hyalodendriella bialowiezensis on debris beneath fallen bark of Norway spruce Picea abies . Russia , Bolbitius sibiricus on а moss covered rotting trunk of Populus tremula , Crepidotus wasseri on debris of Populus tremula , Entoloma isborscanum on soil on calcareous grasslands, Entoloma subcoracis on soil in subalpine grasslands, Hydropus lecythiocystis on rotted wood of Betula pendula , Meruliopsis faginea on fallen dead branches of Fagus orientalis , Metschnikowia taurica from fruits of Ziziphus jujube , Suillus praetermissus on soil, Teunia lichenophila as endophyte from Cladonia rangiferina . Slovakia , Hygrocybe fulgens on mowed grassland, Pleuroflammula pannonica from corticated branches of Quercus sp. South Africa , Acrodontium burrowsianum on leaves of unidentified Poaceae , Castanediella senegaliae on dead pods of Senegalia ataxacantha , Cladophialophora behniae on leaves of Behnia sp., Colletotrichum cliviigenum on leaves of Clivia sp., Diatrype dalbergiae on bark of Dalbergia armata , Falcocladium heteropyxidicola on leaves of Heteropyxis canescens , Lapidomyces aloidendricola as epiphyte on brown stem of Aloidendron dichotomum , Lasionectria sansevieriae and Phaeosphaeriopsis sansevieriae on leaves of Sansevieria hyacinthoides , Lylea dalbergiae on Diatrype dalbergiae on bark of Dalbergia armata , Neochaetothyrina syzygii (incl. Neochaetothyrina gen. nov.) on leaves of Syzygium chordatum , Nothophaeomoniella ekebergiae (incl. Nothophaeomoniella gen. nov.) on leaves of Ekebergia pterophylla , Paracymostachys euphorbiae (incl. Paracymostachys gen. nov.) on leaf litter of Euphorbia ingens , Paramycosphaerella pterocarpi on leaves of Pterocarpus angolensis , Paramycosphaerella syzygii on leaf litter of Syzygium chordatum , Parateichospora phoenicicola (incl. Parateichospora gen. nov.) on leaves of Phoenix reclinata , Seiridium syzygii on twigs of Syzygium chordatum , Setophoma syzygii on leaves of Syzygium sp., Star­merella xylocopis from larval feed of an Afrotropical bee Xylocopa caffra , Teratosphaeria combreti on leaf litter of Combretum kraussii , Teratosphaericola leucadendri on leaves of Leucadendron sp., Toxicocladosporium pterocarpi on pods of Pterocarpus angolensis . Spain , Cortinarius bonachei with Quercus ilex in calcareus soils, Cortinarius brunneovolvatus under Quercus ilex subsp. ballota in calcareous soil, Extremopsis radicicola (incl. Extremopsis gen. nov.) from root-associated soil in a wet heathland, Russula quintanensis on acidic soils, Tubaria vulcanica on volcanic lapilii material, Tuber zambonelliae in calcareus soil. Sweden , Elaphomyces borealis on soil under Pinus sylvestris and Betula pubescens . Tanzania , Curvularia tanzanica on inflorescence of Cyperus aromaticus . Thailand , Simplicillium niveum on Ophiocordyceps camponoti-leonardi on underside of unidentified dicotyledonous leaf. USA , Calonectria californiensis on leaves of Umbellularia californica , Exophiala spartinae from surface sterilised roots of Spartina alterniflora , Neophaeococcomyces oklahomaensis from outside wall of alcohol distillery. Vietnam , Fistulinella aurantioflava on soil. Morphological and culture characteristics are supported by DNA barcodes.
... Given that it is composed of 61 genera, it is regarded as one of the largest families in Dothideomycetes [188]. Members of this family are adapted to a broad range of life modes and can be saprobic, plant and human pathogenic, rock-inhabiting and endophytic; accordingly, they are widely distributed across varied terrain [49,136,139,188,189]. We have included representative sequence data of all available genera listed in Hongsanan et al. [188] for the phylogenetic analyses (except Davisoniella, Pachysacca and Placocrea, which lack DNA-based sequence data). ...
... (CCFEE 5569), Xenoconiothyrium catenata and Xenophacidiella pseudocatenata, with 87% ML and 1.00 BYPP support values. Among them, only Camarosporula persooniae is reported from the sexual morph, and despite the high degree of phylogenetic similarity, these two species are morphologically dissimilar [136]. Neophaeothecoidea is more closely related to Haniomyces in the phylogenetic results, but this relationship lacks statistical support. ...
Article
Full-text available
Members of Dodonaea are broadly distributed across subtropical and tropical areas of southwest and southern China. This host provides multiple substrates that can be richly colonized by numerous undescribed fungal species. There is a severe lack of microfungal studies on Dodonaea in China, and consequently, the diversity, phylogeny and taxonomy of these microorganisms are all largely unknown. This paper presents two new genera and four new species in three orders of Dothideomycetes gathered from dead twigs of Dodonaea viscosa in Honghe, China. All new collections were made within a selected area in Honghe from a single Dodonaea sp. This suggests high fungal diversity in the region and the existence of numerous species awaiting discovery. Multiple gene sequences (non-translated loci and protein-coding regions) were analysed with maximum likelihood and Bayesian analyses. Results from the phylogenetic analyses supported placing Haniomyces dodonaeae gen. et sp. in the Teratosphaeriaceae family. Analysis of Rhytidhysteron sequences resulted in Rhytidhysteron hongheense sp. nov., while analysed Lophiostomataceae sequences revealed Lophiomurispora hongheensis gen. et sp. nov. Finally, phylogeny based on a combined dataset of pyr-enochaeta-like sequences demonstrates strong statistical support for placing Quixadomyces hongheensis sp. nov. in Parapyrenochaetaceae. Morphological and updated phylogenetic circum-scriptions of the new discoveries are also discussed.
... re-described and illustrated the type species and accepted Anthracostroma persooniae as the sexual morph.Crous et al. (2011b) confirmed this link in their phylogenetic study. Hence,Wijayawardene et al. (2014b) accepted sexual typified name over asexual typified name. However,Rossman et al. (2015b) disagreed withWijayawardene et al. (2014b) and suggested to adopt Camarosporula over Anthracostroma as the former has been reported frequently(Farr and Rossman 2019) ...
... Hence,Wijayawardene et al. (2014b) accepted sexual typified name over asexual typified name. However,Rossman et al. (2015b) disagreed withWijayawardene et al. (2014b) and suggested to adopt Camarosporula over Anthracostroma as the former has been reported frequently(Farr and Rossman 2019) and as it was recently used in literature(Crous et al. 2011b). Refs.:Crous et al. (2011),Wijayawardene et al. (2012Wijayawardene et al. ( , 2014bWijayawardene et al. ( , 2016bWijayawardene et al. ( , 2017a,Kirk et al. (2013),Rossman et al. (2015b). ...
Article
Full-text available
Identification, classification and nomenclature of asexual fungi (including coelomycetes) have been changing rapidly. However, nomenclatural changes of coelomycetous fungi have not been thoroughly discussed since Sutton (1977). Hence, it is essential to compile all scattered data and revisit the list of generic names. In this study, we compiled all published generic names of coelomycetous taxa including invalid and illegitimate names. Further, sexual genera which have coelomycetous asexual morphs are also provided. The present paper is a part of a series of papers on coelomycetous genera.