Figure - available from: Environmental Science and Pollution Research
This content is subject to copyright. Terms and conditions apply.
Chemical structures of the sulfonamides and their analogs

Chemical structures of the sulfonamides and their analogs

Source publication
Article
Full-text available
In the study, a simple and selective method based on magnetic separation technology is presented for the extraction of sulfonamides (SAs) from environmental water, followed by liquid chromatography–tandem mass spectrometry. In this method, magnetic surface molecularly imprinted polymers (Fe3O4@SiO2@MIPs) with super-paramagnetic property and high se...

Similar publications

Article
Full-text available
In this work, a fast and selective method based on magnetic extraction is presented for the simultaneous extraction of sulfonamides (SAs) and fluoroquinolones (FQs), followed by liquid chromatography-tandem mass spectrometry detection. In this method, magnetic surface double-template molecularly imprinted polymers (MSdt-MIPs) with superparamagnetic...

Citations

... However, the residual effects of these compounds have raised significant concerns. Long-term use of sulfonamides can cause side effects such as hematopoietic turbulence, allergies, and hypothyroidism [7,8]. ...
Article
Full-text available
Organic pollutants, distinguished by their persistence and bioaccumulation in the environment, pose significant ecological and health threats that surpass those of traditional pollutants. Crucial to understanding their environmental behavior, health risks, and mitigation strategies, is the screening and identification of these pollutants. This process indispensably employs functional materials, among which molecularly imprinted polymers (MIPs) prove to be particularly advantageous because of their specific recognition capabilities and extensive application range. This review presents cutting-edge techniques and strategies for the fabrication of MIPs, including surface imprinting techniques and dummy molecular strategies. It encapsulates the last five years’ advancements in MIP research within the domains of sample pretreatment, as well as optical and electrochemical sensing analysis. The objective of this discourse is to potentially foster the evolution of MIP technology and establish the groundwork for its transition from lab-scale to commercial production.
... The ion imprinting technique uses the target ion as a template for cross-linking polymerization, and the pores formed by the resulting polymer are specific, and the pore properties are related to the structure and size of the target ion [14][15][16][17]. For example, Zhang et al. ...
... First, Fe 3 O 4 nanoparticles were synthesized by the chemical coprecipitation method. 45 Then, to obtain magnetic particles with favorable chemical stability, good biocompatibility, and easy modification procedures by various groups, the surface of Fe 3 O 4 nanoparticles was modified to obtain Fe 3 O 4 @SiO 2 . 46 Subsequently, the CBD-MMIPs were fabricated from Fe 3 O 4 @SiO 2 by the surface-imprinted copolymerization method, in which CBD was used as the template molecule, EGDMA as the crosslinking agent, MAA as the functional monomer, AIBN as the initiator, and polyvinylpyrrolidone (PVP) as the dispersive reagent. ...
Article
Full-text available
Cannabidiol (CBD) has attracted immense attention due to its excellent clinical effects in the treatment of various diseases. However, rapid and accurate extraction of CBD from hemp plant concentrates remains a challenge. Thus, novel magnetic molecularly imprinted polymers (CBD-MMIPs) with specific recognizing capability for CBD were synthesized using ethylene glycol dimethacrylate as the cross-linker, CBD as the template, methacrylic acid as the functional monomer, azobisisobutyronitrile as the initiator, and Fe3O4 nanoparticles modified with SiO2 as the magnetic carrier. The morphological, magnetic, and adsorption properties of obtained CBD-MMIPs were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, vibrating sample magnetometry, surface area and porosity analyses, and various adsorption experiments. The results showed that the CBD-MMIPs had selective specificity and high adsorption capacity for CBD. The adsorption of CBD by CBD-MMIPs could reach equilibrium in a short time (30 min), and the maximum adsorption capacity was as high as 26.51 mg/g. The specific recognition and selectivity properties of CBD-MMIPs to CBD were significantly higher than that of other structural analogues, and the regeneration tests established that the CBD-MMIPs had good recyclability. Furthermore, the CBD-MMIPs could be successfully used as an adsorbent to the extraction of CBD from hemp leaf sample concentrates with high recovery efficiencies (93.46-97.40%).
... Moreover, compared to other methods developed for screening [43,50,51], the present method offers similar LOD values, particularly when using 25 mL of sample. Finally, there are methods that provided lower LOD values, but they require chromatographic equipment connected to fluorimeters [52] or mass spectrometry detectors [53][54][55], and this type of technology cannot be applied in the field in the manner of our proposed mobile device sensor. ...
Article
Full-text available
Antibiotic resistance is a major health concern of the 21st century. The misuse of antibiotics over the years has led to their increasing presence in the environment, particularly in water resources, which can exacerbate the transmission of resistance genes and facilitate the emergence of resistant microorganisms. The objective of the present work is to develop a chemosensor for screening of sulfonamides in environmental waters, targeting sulfamethoxazole as the model analyte. The methodology was based on the retention of sulfamethoxazole in disks containing polystyrene divinylbenzene sulfonated sorbent particles and reaction with p-dimethylaminocinnamaldehyde, followed by colorimetric detection using a computer-vision algorithm. Several color spaces (RGB, HSV and CIELAB) were evaluated, with the coordinate a_star, from the CIELAB color space, providing the highest sensitivity. Moreover, in order to avoid possible errors due to variations in illumination, a color palette is included in the picture of the analytical disk, and a correction using the a_star value from one of the color patches is proposed. The methodology presented recoveries of 82–101% at 0.1 µg and 0.5 µg of sulfamethoxazole (25 mL), providing a detection limit of 0.08 µg and a quantification limit of 0.26 µg. As a proof of concept, application to in-field analysis was successfully implemented.
... Up to now, the analytical methods for macrolide antibiotics include enzyme-linked immunosorbent assay (Xu et al. 2017), thin-layer chromatography (Ahmed et al. 2013), and highperformance liquid chromatography (Maher et al. 2008). Because the residual antibiotic in environment are often low in content, and it can be interfered by the coexisting substances, and so, effective separation and purification of samples are extensively required. ...
Article
Full-text available
A novel eco-friendly molecularly imprinted polymer (MIP) was proposed as solid-phase extraction (SPE) adsorbent to selective adsorption tylosin (TYL) in animal muscle samples. The MIP was synthesized in aqueous by using 1,4-butanediyl-3,3-bis-1-vinyl imidazolium chloride and 2-acrylamide-2-methylpropanesulfonic acid as bifunctional monomer. The obtained MIP had excellent selectivity towards TYL in water, and the maximum binding capacity can reach 123.45 mg g⁻¹. Combined with high-performance liquid chromatography, the presented MIP can be used as SPE sorbent to recognize and detect TYL in the range of 0.008 to 0.6 mg L⁻¹ (R² = 0.9995). The limit of detection and limit of quantification were 0.003 mg L⁻¹ and 0.008 mg L⁻¹, and the intraday and interday precision were 1.05% and 3.36%, respectively. Under the optimal condition, the established MIP-SPE-HPLC method was successfully applied to separate and determine trace TYL in chicken, pork, and beef samples with satisfactory recoveries ranged from 94.0 to 106.3%, and the MIP-SPE cartridge can be cycled at least 20 times. This study implies a promising green MIP-SPE-HPLC method for highly selective adsorption and analysis trace TYL in complex matrices.
... Fig. 1 The SEM image (a), nitrogen adsorption-desorption isotherms (b), PXRD pattern (c), and FTIR spectrum (d) of PCONFs Furthermore, this method was compared with previously methods for determination of SAs. As listed in Table 2, the LODs of this method were better than [10,11,31,32] or comparable with [33,34] those of the other methods. The PCONF-packed cartridge exhibited advantages of low cost (originating from the inexpensive reaction monomer), good affinity and selectivity for SAs, while the LC-MS/MS had merits of high resolution and short detection time (5.5 min). ...
Article
Full-text available
Porous covalent organonitridic frameworks (PCONFs) were applied as a packing in a solid-phase extraction cartridge for rapid extraction of eight sulfonamide antibiotics from complex samples. The detection was performed by liquid chromatography–tandem mass spectrometry under the multiple reaction monitoring mode. This enabled ultrasensitive, dependable and cost-effective simultaneous analysis of sulfacetamide, sulfadiazine, sulfathiazole, sulfapyridine, sulfamerazine, sulfamethazine, sulfamethoxazole and sulfisoxazole. Main parameters affecting the performance of the PCONF-packed cartridge were investigated. Under optimized conditions, this method has attractive features such as wide linear ranges (2.5–1000 ng·L⁻¹), low limits of detection (0.14–2.0 ng·L⁻¹), and good repeatability (intra-day assay: 2.1%–5.6%; inter-day assay: 2.3%–12.9%). It was successfully applied in the analysis of sulfonamide residues in water, milk and chicken meat samples. Graphical abstractThe use of a porous covalent organonitridic framework (PCONFs) as solid-phase extraction (SPE) material is described here for the first time. An ultrasensitive, dependable and cost-effective method was developed for simultaneous analysis of eight sulfonamide residues in water, milk and chicken meat samples by coupling PCONF-based SPE with liquid chromatography–tandem mass spectrometry.
... Moreover, time-consuming processes with conventional SPE method, such as packing of columns and loading largevolume samples, could be eliminated. Therefore, MSPE has recently been widely applied for the isolation, purification, and preconcentration of analytes in different samples especially in those of complex composition (Xu et al. 2017;Tolmacheva et al. 2016;. ...
Article
Full-text available
In this work, a fast and selective method based on magnetic extraction is presented for the simultaneous extraction of sulfonamides (SAs) and fluoroquinolones (FQs), followed by liquid chromatography-tandem mass spectrometry detection. In this method, magnetic surface double-template molecularly imprinted polymers (MSdt-MIPs) with superparamagnetic property and high selectivity toward both SAs and FQs were synthesized and directly applied to the simultaneous extraction of SAs and FQs from environmental water as magnetic adsorbents. The extraction and enrichment procedures could be accomplished in one single step by stirring the mixture of MSdt-MIPs and water sample, and the MSdt-MIPs with adsorbed analytes were easily separated from the water sample by a magnet afterwards. The adsorption mechanism of MSdt-MIPs was investigated by employing the adsorption thermodynamic and kinetic studies, and the selectivity of the MSdt-MIPs toward target analytes was evaluated through the selectivity test. For validation of the proposed method, the matrix effect was evaluated and compared to that of the traditional SPE method. Excellent linearity (R > 0.9990) for both SAs and FQs were obtained in the concentration range of 20–2000 ng L⁻¹, and the limits of detection are in the range of 3.0–4.7 ng L⁻¹ for SAs while 4.1–6.1 ng L⁻¹ for FQs. Finally, the proposed method was successfully applied to the simultaneous determination of SAs and FQs in several environmental water samples.
... Therefore, a highly sensitive, efficient, and simple method is needed. In recent years, molecularly imprinted polymers (MIPs) materials have been employed in classical solid-phase extraction and solidphase microextraction, 21,22 due to their unique structure with ideal recognition sites. [23][24][25] MIPs are synthesized by the crosslinking of functional monomers and specic template molecules. ...
Article
Full-text available
In this study, a facile method based on molecularly imprinted polymers (MIPs) combined with internal extractive electrospray ionization tandem mass spectrometry (iEESI-MS/MS) was developed for the quantitative analysis of fluoroquinolones (FQs) in environmental water samples. FQ molecules in water samples were captured by the MIPs, which was retained on a 0.22 μm syringe filter. Then, an electrospray solution selected as the elution solution was employed to extract the FQs from the MIPs, getting an eluate of FQs for mass spectrometric interrogation. Under the optimized experimental conditions, low limits of detection (LODs, 0.015–0.026 μg L⁻¹), with relative standard deviations (RSDs) less than 8.81% (n = 6) were obtained. The present method also provides good recoveries (91.14–103.60%) with acceptable precision (RSDs < 6.18%) and have no serious matrix effects for environmental water samples. The experimental results demonstrated that MIPs-iEESI-MS/MS has advantages including easy use, high speed (less than 3 min per sample) and high sensitivity for the analysis of FQs in environmental water samples, showing potential application in environmental science and water safety control.
... Sulfonamides (SAs) are one of the oldest classes of antibiotic drugs with widespread applications in prophylactic, therapeutic, and growth promoting [1,2] treatments, thanks to their low toxicity and high efficiency against bacterial diseases [3][4][5][6]. Recently, however, due to the abuse of SAs, their residues have become a considerable concern. ...
... Recently, however, due to the abuse of SAs, their residues have become a considerable concern. It has reported that long-term use can produce certain side effects, such as emiction [6], hemopoiesis turbulence [6,7], allergic hypersensitivity reactions in humans, and carcinogen resulting in hypothyroid [8]. In response to the dangers of SAs, the maximum residue level (MRL) of SAs was established as 100 µg/kg [9] in the European Union. ...
... Recently, however, due to the abuse of SAs, their residues have become a considerable concern. It has reported that long-term use can produce certain side effects, such as emiction [6], hemopoiesis turbulence [6,7], allergic hypersensitivity reactions in humans, and carcinogen resulting in hypothyroid [8]. In response to the dangers of SAs, the maximum residue level (MRL) of SAs was established as 100 µg/kg [9] in the European Union. ...
Article
Full-text available
In this paper, we present a simple and feasible electrochemical sensor based on Au nanoparticle-functionalized graphene for the determination of sulfanilamide. Au nanoparticles were deposited on graphene, which acted as a platform to prepare excellent nanocomposites. Attributed to the graphene's large surface area and the Au nanoparticles' strong conductivity, many sulfanilamide molecules were enriched on the sensor surface and the signal response became more sensitive. Under the optimal conditions, the electrochemical sensors could be used for the efficient detection of sulfanilamide. Good linearity was observed in the range of 0.1-1000 μmol·L-1and the detection limit was 0.011 μmol·L-1. Most importantly, the Au nanoparticle-functionalized graphene-modified electrode could be successfully applied for the detection of sulfanilamide in animal meat, and exhibited good stability, acceptable recovery, and offered a promising platform for point-of-care detecting in real samples.
Article
Full-text available
Frequent detection of sulfonamides (SAs) pharmaceuticals in wastewater has necessitated the discovery of suitable technology for their sustainable remediation. Adsorption has been widely investigated due to its effectiveness, simplicity, and availability of various adsorbent materials from natural and artificial sources. This review highlighted the potentials of carbon-based adsorbents derived from agricultural wastes such as lignocellulose, biochar, activated carbon, carbon nanotubes graphene materials as well as organic polymers such as chitosan, molecularly imprinted polymers, metal, and covalent frameworks for SAs removal from wastewater. The promising features of these materials including higher porosity, rich carbon-content, robustness, good stability as well as ease of modification have been emphasized. Thus, the materials have demonstrated excellent performance towards the SAs removal, attributed to their porous nature that provided sufficient active sites for the adsorption of SAs molecules. The modification of physico-chemical features of the materials have been discussed as efficient means for enhancing their adsorption and reusable performance. The article also proposed various interactive mechanisms for the SAs adsorption. Lastly, the prospects and challenges have been highlighted to expand the knowledge gap on the application of the materials for the sustainable removal of the SAs.