Fig 7 - uploaded by Tobias Prinz
Content may be subject to copyright.
-Chandra ACIS-S view on the globular clusters M13 (NGC 6205) and the HRC-I view on NGC 6441. The clusters core radius and the position of known millisecond pulsars are indicated by blue and red circles, respectively. (Status: spring 2010).

-Chandra ACIS-S view on the globular clusters M13 (NGC 6205) and the HRC-I view on NGC 6441. The clusters core radius and the position of known millisecond pulsars are indicated by blue and red circles, respectively. (Status: spring 2010).

Source publication
Article
Full-text available
We have systematically studied the X-ray emission properties of globular cluster millisecond pulsars in order to evaluate their spectral properties and luminosities in a uniform way. Cross-correlating the radio timing positions of the cluster pulsars with the high resolution Chandra images revealed 31 X-ray counterparts identified in nine different...

Context in source publication

Context 1
... then computed the confidence ranges of the blackbody normalization and temperatures by leaving these parameters free. The resulting contours, computed for two parameters of interest, are shown in Figure 17. ...

Similar publications

Article
Full-text available
The detections of both X-ray and radio emission from the cluster G1 in M31 have provided strong support for existing dynamical evidence for an intermediate mass black hole (IMBH) of mass 1.8 +/- 0.5 x 10^4 solar masses at the cluster center. However, given the relatively low significance and astrometric accuracy of the radio detection, and the non-...
Preprint
Full-text available
Radio timing observations of a millisecond pulsar in orbit around the Galactic centre black hole (BH) or a BH at the centre of globular clusters could answer foundational questions in astrophysics and fundamental physics. Pulsar radio astronomy typically employs the post-Keplerian approximation to determine the system parameters. However, in the st...
Article
Full-text available
The existence of intermediate-mass black holes (IMBHs) in globular clusters (GCs) remains a crucial problem. Searching IMBHs in GCs reveals a discrepancy between radio observations and dynamical modelings: the upper mass limits constrained by radio observations are systematically lower than that of dynamical modelings. One possibility for such a di...

Citations

... The majority of the MSPs with pulsed X-ray emission are found in the Galactic Plane (see e.g. Zavlin [2007] for a review) and four are located in a globular cluster [Becker et al., 2010]. Within the sample of MSPs with pulsed X-ray emission, two groups can be identified for which the bulk of the observed pulsed X-ray emission is either of thermal or of non-thermal origin [Zavlin, 2007]. ...
Thesis
Diese Arbeit berichtet über die Suche nach gepulster und ungepulster hochenergetischer (VHE) Gammastrahlung mit dem High Energy Stereoscopic System (H.E.S.S.) im Energiebereich von 100 GeV bis 100 TeV von drei Pulsaren. Gepulste VHE Gammastrahlung wurde bisher nur fuer den jungen Krebspulsar gefunden. Eine besondere Gruppe von Pulsarwindnebeln (PWN) sind die zusammengesetzten Supernovaüberreste (SNR), bei denen sich ein PWN im Zentrum einer expandierenden SNR Schale befindet. Die Resultate der Suche nach gepulster und ungepulster VHE Gammastrahlung von zwei Millisekundenpulsaren, PSR J0437-4715 und PSR J1824-2452, werden im ersten Teil dieser Arbeit vorgestellt. Teile der Beobachtungen wurden in einer speziellen Triggerkonfiguration (dem Topologischen Trigger mit konvergenter Ausrichtung) durchgeführt, um die Energieschwelle des Instruments zu senken. Kein Hinweis auf gepulste oder ungepulste Emission wurde gefunden und obere Grenzen auf den gepulsten und ungepulsten Fluss wurden bestimmt. Die oberen Grenzen auf den gepulsten Fluss werden mit bestehenden Modellvorhersagen verglichen und erlauben für PSR J1824-2452 den Bereich möglicher Geometrien in einigen Modellen einzuschränken. Die Resultate der Suche nach gepulster und ungepulster VHE Gammastrahlung aus der Richtung des zusammengesetzten SNR Kes 75 werden im zweiten Teil dieser Arbeit präsentiert. Der PWN im Zentrum von Kes 75 wird von einem sehr jungen und energiereichen Pulsar, PSR J1846-0258, angetrieben, der ein aussergewöhnlich starkes Magnetfeld besitzt. Während kein Hinweis auf gepulste Strahlung gefunden wurde, konnte ungepulste Emission von VHE Gammastrahlung von einer Punktquelle mit einer statistischen Signifikanz von 10 sigma nachgewiesen werden. Die VHE Gammastrahlung ist räumlich koinzident mit dem PWN und mit der SNR Schale. Beide werden als mögliche Quelle für die beobachtete Emission diskutiert. Der Pulsar von Kes 75 wäre der jüngste bisher bekannte Pulsar, der einen Pulsarwindnebel antreibt.
Article
Full-text available
The population of millisecond pulsars (MSPs) has been expanded considerably in the last decade. Not only is their number increasing, but also various classes of them have been revealed. Among different classes of MSPs, the behaviours of black widows and redbacks are particularly interesting. These systems consist of an MSP and a low-mass companion star in compact binaries with an orbital period of less than a day. In this article, we give an overview of the high energy nature of these two classes of MSPs. Updated catalogues of black widows and redbacks are presented and their X-ray/ γ -ray properties are reviewed. Besides the overview, using the most updated eight-year Fermi Large Area Telescope point source catalog, we have compared the γ -ray properties of these two MSP classes. The results suggest that the X-rays and γ -rays observed from these MSPs originate from different mechanisms. Lastly, we will also mention the future prospects of studying these spider pulsars with the novel methodologies as well as upcoming observing facilities.
Article
Reprocessing of X-ray pulsar radiation by the atmosphere of a companion in a binary system may result in reflected pulse radiation under suitable conditions. In this paper the influence of the rotation of the source of the radiation about its axis on the parameters of thus reflected pulses is investigated. The binary system is modeled by the spherical reflective screen and the compact source uniformly rotating about its axis; the beam pattern (BP) of the source periodically runs along the surface of the screen. Irradiation of the screen by the pulses which have infinitely narrow time spread and by the rectangular pulses is considered. The model does not concern the details of the reprocessing and reemission of the photons. In this model parameters of the pulses reflected in some directions are calculated. The main conclusion provided by the consideration of this model is that the properties of reflected pulses — their profile and observed time of arrival — substantially depend on the correlation between the light speed and the speed of the BP passing along the companion’s surface. The possibility of applying of the obtained results to the known X-ray accretion-powered pulsars and rotation-powered pulsars in binary systems is examined.
Article
Full-text available
We report on X-ray and gamma-ray observations of the millisecond pulsar (MSP) B1937+21 taken with the Chandra X-ray Observatory, XMM-Newton, and the Fermi Large Area Telescope. The pulsar X-ray emission shows a purely non-thermal spectrum with a hard photon index of 0.9 ± 0.1, and is nearly 100% pulsed. We found no evidence of varying pulse profile with energy as previously claimed. We also analyzed 5.5 yr of Fermi survey data and obtained much improved constraints on the pulsar's timing and spectral properties in gamma-rays. The pulsed spectrum is adequately fitted by a simple power-law with a photon index of 2.38 ± 0.07. Both the gamma-ray and X-ray pulse profiles show similar two-peak structure and generally align with the radio peaks. We found that the aligned profiles and the hard spectrum in X-rays seem to be common properties among MSPs with high magnetic fields at the light cylinder. We discuss a possible physical scenario that could give rise to these features.
Chapter
Globular clusters (GCs) with their ages of the order of several billion years contain many final products of evolution of stars such as: neutron stars, white dwarfs and probably also black holes. These compact objects can be at present responsible for the acceleration of particles to relativistic energies. Therefore, γ-ray emission is expected from GCs as a result of radiation processes occurring either in the inner magnetosperes of millisecond pulsars or in the vicinity of accreting neutron stars and white dwarfs or as a result of interaction of particles leaving the compact objects with the strong radiation field within the GC. Recently, GeV γ-ray emission has been detected from several GCs by the new satellite observatory Fermi. Also Cherenkov telescopes reported interesting upper limits at the TeV energies which start to constrain the content of GCs. We review the results of these γ-ray observations in the context of recent scenarios for their origin.
Article
Full-text available
We report on a multi-wavelength study of the compact object candidate 1RXS J141256.0+792204 (Calvera). Calvera was observed in the X-rays with XMM/EPIC twice for a total exposure time of ~50 ks. The source spectrum is thermal and well reproduced by a two component model composed of either two hydrogen atmosphere models, or two blackbodies (kT_1~ 55/150 eV, kT_2~ 80/250 eV, respectively, as measured at infinity). Evidence was found for an absorption feature at ~0.65 keV; no power-law high-energy tail is statistically required. Using pn and MOS data we discovered pulsations in the X-ray emission at a period P=59.2 ms. The detection is highly significant (> 11 sigma), and unambiguously confirms the neutron star nature of Calvera. The pulse profile is nearly sinusoidal, with a pulsed fraction of ~18%. We looked for the timing signature of Calvera in the Fermi Large Area Telescope (LAT) database and found a significant (~5 sigma) pulsed signal at a period coincident with the X-ray value. The gamma-ray timing analysis yielded a tight upper limit on the period derivative, dP/dt < 5E-18 s/s (dE_rot/dt <1E33 erg/s, B<5E10 G for magneto- dipolar spin-down). Radio searches at 1.36 GHz with the 100-m Effelsberg radio telescope yielded negative results, with a deep upper limit on the pulsed flux of 0.05 mJy. Diffuse, soft (< 1 keV) X-ray emission about 13' west of the Calvera position is present both in our pointed observations and in archive ROSAT all-sky survey images, but is unlikely associated with the X-ray pulsar. Its spectrum is compatible with an old supernova remnant (SNR); no evidence for diffuse emission in the radio and optical bands was found. The most likely interpretations are that Calvera is either a central compact object escaped from a SNR or a mildly recycled pulsar; in both cases the source would be the first ever member of the class detected at gamma-ray energies. Comment: 20 pages, 15 figures and 4 tables. Accepted for publication in MNRAS