Fig 3 - available from: BMC Cancer
This content is subject to copyright. Terms and conditions apply.
Cell cycle phases (a at G1, b at G2 & c the S phase) and analysis by flow cytometry with location of miRs (200c, 221,346 and 1195) after treatments (d) with miRs and (e) with N-miRs in addition to the control without any miR and non-treated control cells

Cell cycle phases (a at G1, b at G2 & c the S phase) and analysis by flow cytometry with location of miRs (200c, 221,346 and 1195) after treatments (d) with miRs and (e) with N-miRs in addition to the control without any miR and non-treated control cells

Source publication
Article
Full-text available
Background MicroRNAs are noncoding RNA molecules of ~ 22 nucleotides with diagnostic and therapeutic action [Curr Drug Targets, 2015. 16(12): p. 1381-403], affecting the expression of mRNAs involved in invasion, migration, and development [Oncotarget, 2015. 6(9): p. 6472-98, Cancer Manag Res, 2014. 6: p. 205-16]. miR-200c is part of the miR-200c/14...

Contexts in source publication

Context 1
... negative empty vector control (same compos- ition as the suspension or vehicle without miRs) was performed to examine the viability and cytotoxicity of the Nano preparation by flow cytometry after addition of propidium iodide. There is a significant change in cell cycle phases after the treatments by encapsulated miR-200c compare to miR-200c ( Fig. 3 and Additional file 1: Figure S2). Encapsulated cells entering the preparation for DNA synthesis G1 phase of this nat- urally occurring cell proliferation process are 2 to 4 fold changed when preparing for Mitosis in G2 and 6 plus fold higher when replicating in S phase pointing to very interesting regulatory mechanisms as our ...
Context 2
... cycle FACS analysis of various encapsulated miRs (200c, 221, 222, 346, and 1195) with negative empty vector control (same composition as the suspension or vehicle with no miRs). Figure S3. A-Heat map and unsupervised hierarchical clustering by sample and genes were performed for the listed samples using the 500 genes with the largest coefficient of variation based on the FPKM counts. ...

Similar publications

Article
Full-text available
The mechanism of interaction between RSV and host noncoding RNAs is not fully understood. In this study, we found that the expression of long noncoding RNA (lncRNA) negative regulator of antiviral response (NRAV) was reduced in RSV-infected patients, and overexpression of NRAV facilitated RSV production in vitro , suggesting that the reduction of N...

Citations

... The therapeutic potential of miRNAs has now been reported . Nanovesicles can transport MiR-200c to lung carcinoma cells (D'Almeida et al., 2019;19(1):136.). As a result, the expression of tumour suppressors miR-29b and MiR-1247 in metastatic and nonmetastatic lung cancer cells may be increased by nano miR-200c. ...
Article
Mitochondria is one of the basic essential components for eukaryotic life survival. It is also the source of respiratory ATP. Recently published studies have demonstrated that mitochondria may have more roles to play aside from energy production. There is an increasing body of evidence which suggest that mitochondrial activities involved in normal and pathological states contribute to significant impact to the lung airway morphology and epithelial function in respiratory diseases such as asthma, COPD, and lung cancer. This review summarizes the pathophysiological pathways involved in asthma, COPD, lung cancer and highlights potential treatment strategies that target the malfunctioning mitochondria in such ailments. Mitochondria are responsive to environmental stimuli such as infection, tobacco smoke, and inflammation, which are essential in the pathogenesis of respiratory diseases. They may affect mitochondrial shape, protein production and ultimately cause dysfunction. The impairment of mitochondrial function has downstream impact on the cytosolic components, calcium control, response towards oxidative stress, regulation of genes and proteins and metabolic activities. Several novel compounds and alternative medicines that target mitochondria in asthma and chronic lung diseases have been discussed here. Moreover, mitochondrial enzymes or proteins that may serve as excellent therapeutic targets in COPD are also covered. The role of mitochondria in respiratory diseases is gaining much attention and mitochondria-based treatment strategies and personalized medicine targeting the mitochondria may materialize in the near future. Nevertheless, more in-depth studies are urgently needed to validate the advantages and efficacy of drugs that affect mitochondria in pathological states.
... Given the nature of the carrier, the Nano miR-200c was designed to penetrate the mitochondria and the cell nucleus. As a result, an increase in the expression of mitochondrial genes was observed, which can later be used to restore the membrane potential of mitochondria and normalize the work of the electron transport chain (ETC) [159]. ...
Article
Full-text available
MicroRNAs are short, non-coding RNA molecules regulating gene expression by inhibiting the translation of messenger RNA (mRNA) or leading to degradation. The miRNAs are encoded in the nuclear genome and exported to the cytosol. However, miRNAs have been found in mito-chondria and are probably derived from mitochondrial DNA. These miRNAs are able to directly regulate mitochondrial genes and mitochondrial activity. Mitochondrial dysfunction is the cause of many diseases, including cancer. In this review, we consider the role of mitochondrial miRNAs in the pathogenesis of lung cancer with particular reference to radon exposure.
... Nano miR-200c can increase the expressions of the tumor suppressors miR-29b and miR-1247 in metastatic and non-metastatic lung cancer cells. It can also suppress lung tumor cell migration and invasion [173]. Tumor-derived exosomes can selectively deliver anticancer therapies to lung cancer sites due to their intrinsic organotropic tumor-homing properties [174][175][176]. ...
Article
Full-text available
Lung cancer is one of the most malignant cancers around the world, with high morbidity and mortality. Metastasis is the leading cause of lung cancer deaths and treatment failure. MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs), two groups of small non-coding RNAs (nc-RNAs), are confirmed to be lung cancer oncogenes or suppressors. Transforming growth factor-β (TGF-β) critically regulates lung cancer metastasis. In this review, we summarize the dual roles of miRNAs and lncRNAs in TGF-β signaling-regulated lung cancer epithelial-mesenchymal transition (EMT), invasion, migration, stemness, and metastasis. In addition, lncRNAs, competing endogenous RNAs (ceRNAs), and circular RNAs (circRNAs) can act as miRNA sponges to suppress miRNAs, thereby mediating TGF-β signaling-regulated lung cancer invasion, migration, and metastasis. Through this review, we hope to cast light on the regulatory mechanisms of miRNAs and lncRNAs in TGF-β signaling-regulated lung cancer metastasis and provide new insights for lung cancer treatment.
Article
Full-text available
microRNAs are regulatory RNAs that silence specific mRNA by binding to it, inducing translational repression. Over the recent decades since the discovery of RNA interference, the field of microRNA therapeutics has expanded tremendously. The role of miRNAs in disease development has attracted researchers to investigate their potential in therapeutics. In lung cancer, multiple miRNAs are deregulated, and their involvement is observed in cell proliferation, immunomodulation, angiogenesis, and epithelial-mesenchymal transition. Thus, synthetic oligonucleotides are developed to downregulate the overexpressed miRNA or to upregulate the repressed miRNA. However, their clinical efficiency is limited due to the requirement for an effective delivery strategy. Advances in the current understanding of nanotechnology, biomaterial science, and disease molecular pathology have increased the chances of overcoming the limitations of miRNA-based therapy. This review enlists downregulated and upregulated miRNAs in lung cancer. This review also highlights the major contributions to miRNA-based therapeutics for lung cancer and strategies to overcome endosomal barriers. It also attempts to understand the nuances between current advancements in delivery methods, advantages, disadvantages, and practical issues for the large-scale development of miRNA-based therapeutics.