Block diagram for simulation model for DC motor without controller

Block diagram for simulation model for DC motor without controller

Source publication
Article
Full-text available
The current work aims to use traditional control algorithms and advanced optimization algorithms that was chosen for its ease of control and the possibility of using it in many industrial applications. By setting the appropriate specifications for the simulation model and after conducting the planned tests that simulate different applications of th...

Similar publications

Article
Full-text available
The efficient and smooth operation of direct current (DC) motors is of high significance in various industrial applications. This study proposed a recent optimization technique, named equilibrium optimizer (EO) for optimal tuning of the parameters of proportional integral derivative (PID) controller to provide accurate and robust control in DC moto...

Citations

Article
Full-text available
The use of the computer program MATLAB is prominent in many studies that simulate many industrial systems. The current simulation aims to build a suitable simulation model representing the Two-phase Hybrid Stepping Motor (2Ph-HSM). This type of motor is employed in a specific application to produce a force called automatic grinding force. To control the force, motor speed, and location, we need to add control systems, so two methods have been proposed, one of which is traditional, namely proportional, integral, and derivative (PID) control and the other is intelligent, called Gray Wolf Optimization (GWO). The current work also aims to use traditional control algorithms and advanced optimization algorithms that were chosen for their ease of control and possibility of use in many industrial applications. By setting appropriate specifications for the simulation model and after conducting prescribed tests that simulate different applications of the motor's work within electrical systems, the results demonstrated good motor performance, better response, and high accuracy, in addition to speed. The goal is to design and tune a proportional, integral, and derivative (PID) controller by gray wolf optimization (GWO) using the transfer function (TF) of a 2Ph-HSM. To adjust the parameters of conventional controllers using advanced optimization, a suitable mechanism and technique were selected from advanced optimization techniques, where the gray wolf technique algorithm was chosen as an optimization technique and Integrated Time Absolute Error (ITAE) to adjust the parameters of conventional PID controller.