Context in source publication

Context 1
... scenario was tested three times and results of each run are presented in Table 4. The column 'Base-run Total time' gives the total time taken by the base-run to complete the execution of all the 330 jobs supplied to the scheduler. ...

Similar publications

Article
Full-text available
Mini review Artificial Intelligence and Virtual Environment for Microalgal Source for Production of Nutraceuticals
Article
Full-text available
Quantum mechanics is a non-intuitive subject. For example, the concept of orbital seems too difficult to be mastered by students who are starting to study it. Various investigations have been done on student's difficulties in understanding basic quantum mechanics. Nevertheless, there are few attempts at probing how student's understanding is influe...

Citations

Article
In this paper we present ARRIVE-F, a novel open source framework which addresses the issue of heterogeneity in virtualized compute farms, such as those hosted by a cloud infrastructure provider. Unlike the previous attempts, our framework is not based on linear frequency models and does not require source code modifications or off-line profiling. The heterogeneous compute farm is first divided into a number of homogeneous sub-clusters. The framework then carries out a lightweight ‘online’ profiling of the CPU, communication and memory subsystems of all the active jobs in the compute farm. From this, it constructs a performance model to predict the execution times of each job on all the distinct sub-clusters in the compute farm. Based upon the predicted execution times, the framework is able to relocate the compute jobs to the currently best-suited hardware platforms such that the overall throughput of the compute farm is increased. We utilize the live migration feature of virtual machine monitors to migrate the job from one sub-cluster to another. The prediction accuracy of our performance estimation model is over 80%. The implementation of ARRIVE-F is lightweight, with an overhead of 3%. Experiments on a synthetic workload of scientific benchmarks show that we are able to improve the throughput of a moderately heterogeneous compute farm by up to 25%, with a time saving of up to 33%.
Conference Paper
In this paper we present ARRIVE-F, a novel open source framework which addresses the issue of heterogeneity in compute farms. Unlike the previous attempts, our framework is not based on linear frequency models and does not require source code modifications or off-line profiling. The heterogeneous compute farm is first divided into a number of virtualized homogeneous sub-clusters. The framework then carries out a lightweight ‘online’ profiling of the CPU, communication and memory subsystems of all the active jobs in the compute farm. From this, it constructs a performance model to predict the execution times of each job on all the distinct sub-clusters in the compute farm. Based upon the predicted execution times, the framework is able to relocate the compute jobs to the best suited hardware platforms such that the overall throughput of the compute farm is increased. We utilize the live migration feature of virtual machine monitors to migrate the job from one sub-cluster to another. The prediction accuracy of our performance estimation model is over 80%. The implementation of ARRIVE-F is lightweight, with an overhead of 3%. Experiments on a synthetic workload of scientific benchmarks show that we are able to improve the throughput of a moderately heterogeneous compute farm by up to 25%, with a time saving of up to 33%.