Figure 1 - uploaded by Jia Grace Lu
Content may be subject to copyright.
Atomic-force-microscope image of a ZnO nanowire FET.

Atomic-force-microscope image of a ZnO nanowire FET.

Citations

... Nanowire based gas sensors are also very popular now a days [61]. Such structures have high aspect ratio (i.e. ...
... Moreover, the carrier diffusion time at the surface is significantly reduced, resulting to a faster response and recovery. Some researchers have investigated devices based on zinc oxide (ZnO) nanowires configured as FETs (Fig. 7) to build high performance sensors [61][62]. Single crystalline ZnO nanowires (with a typical diameter of about 50 nm) were synthesized via a chemical vapor deposition method. ...
Article
Full-text available
Nanomaterials and nanosensors are two most important iconic words of the modern science & Technology. Though nano technology is relatively a new area of research & development it will soon be included in the most modern electronic circuitry used for advanced computing systems. Since it will provide the potential link between the nanotechnology and the macroscopic world the development is primarily directed towards exploitation of nanotechnology to computer chip miniaturization and vast storage capacity. However, for implementation in the consumer products the present high cost of production must be overcome. There are different ways to make nanosensors e.g. top-down lithography, bottom-up assembly, and self molecular assembly. Consequently, nanomaterials & nanosensors have to be made compatible with the consumer technologies. The progress in detecting and sensing different chemical species with increased accuracy may transform the human society from uncertainty and inaccuracy to more precise and definite world of information. For example, extremely low concentrations of air pollutants or toxic materials in air & water around us can be accurately and economically detected in no time to save the human beings from the serious illnesses. Also, the medical sensors will help in diagnoses of the diseases, their treatment and in predicting the future profile of the individual so that the health insurance companies may exploit the opportunity to grant or to deny the health coverage. Other social issues like privacy invasion and security may be best monitored by the widespread use of the surveillance devices using nanosensors.
... Oxidation of film decreases the number of free carriers. Therefore resistance of the film increases with oxidizing gas [28, 29, 30].The result of reaction of NO 2 with polycrystalline ZnO is adsorbed NO 3 with little NO 2 or NO present on the surface of the oxide. The Zn↔NO 2 interactions on ZnO are strong and Zn sites probably get oxidized and nitrated. ...
Article
Full-text available
Zinc Oxide (ZnO) thick films were prepared on alumina substrate by using standard screen printing technique. These films were dried and fired at different temperatures between 700oC to 900oC for two hours in air atmosphere. The Morphological, Compositional and Structural properties of the ZnO thick films were performed by Scanning electron microscopy (SEM), Energy dispersive spectroscopy (EDX) and XRD technique respectively. Chemical composition of ZnO film samples changes with firing temperature showing non-stoichiometric behaviours. XRD study indicated the formation of polycrystalline ZnO films with hexagonal wurtzite structure. We explore NO2 sensing properties of the ZnO films.
Thesis
Le travail présenté dans cette thèse a pour objectif d’étudier le dopage p des nanofils de ZnO par deux procédés différents : in-situ (durant la croissance) et ex-situ par diffusion des impuretés dans les nanofils à partir d’une phase gazeuse. Les nanofils de ZnO étudiés ont été élaborés par MOCVD et caractérisés par différentes techniques : MEB, MET, EDX, XPS, nano-Auger, DRX, SIMS, Sonde atomique tomographique, Raman, PL et I(V). Les tentatives de dopage ex-situ n’ont pas permis aux dopants (arsenic, phosphore et antimoine) de diffuser et de s’incorporer dans la matrice de ZnO. Ces derniers sont restés en surface. Néanmoins, ce procédé a mis en évidence l’importance du traitement de surface des nanofils, avec un recuit sous zinc, afin de réduire d'une part les défauts associés à la surface très réactive de ZnO, et d'autre part de diminuer la densité d’impuretés résiduelle de type n, condition préliminaire à l’incorporation de dopants de type p électriquement actifs. Concernant le dopage in-situ des nanofils de ZnO, le dopant (azote) s’incorpore plus facilement dans la matrice ZnO atteignant une concentration de l’ordre de 1020 at.cm-3. Les analyses de μ-Raman et de μ-PL montrent que l’azote est reparti de façon inhomogène le long des fils. Si les mesures optiques confirment la présence d'accepteurs dans le matériau après dopage, les mesures électriques révèlent toutefois que la conduction des fils dopés azote restent de type n.