Fig 1 - available from: BMC Cardiovascular Disorders
This content is subject to copyright. Terms and conditions apply.
Angiography and RDN perioperative period. (a) pre-RDN, (b) post-RDN. Black arrow indicates the vasospasm site. Abbreviations: RDN, renal denervation

Angiography and RDN perioperative period. (a) pre-RDN, (b) post-RDN. Black arrow indicates the vasospasm site. Abbreviations: RDN, renal denervation

Source publication
Article
Full-text available
Background Resistant hypertension and renal sympathetic hyperactivity are closely linked, and catheter-based renal denervation (RDN) is regarded as a new treatment strategy. However, the acute changes in vascular morphology and relaxation function have yet to be evaluated, and these may be important for the efficacy and safety of the procedure. In...

Contexts in source publication

Context 1
... with the pre-RDN arteries (Fig. 1a), segments of the post-RDN arteries exhibited vasospasm by angiog- raphy in all 3 pigs of RDN group (Fig. 1b); however, we did not find other changes, such as dissection or thrombus or aneurysm formation, in the acute phase after RDN. The vasospasm was of a mild or moderate degree, which would not affect renal perfusion over a short ...
Context 2
... with the pre-RDN arteries (Fig. 1a), segments of the post-RDN arteries exhibited vasospasm by angiog- raphy in all 3 pigs of RDN group (Fig. 1b); however, we did not find other changes, such as dissection or thrombus or aneurysm formation, in the acute phase after RDN. The vasospasm was of a mild or moderate degree, which would not affect renal perfusion over a short ...

Similar publications

Article
Full-text available
Purpose: Although percutaneous catheter-based ablation of renal sympathetic nerve fibers has been used in the treatment of patients with resistant hypertension, a recent phase III study did not confirm its efficacy. In this study, we developed a novel laparoscopic renal denervation system and evaluated its safety and initial feasibility using an a...

Citations

... We speculate that this effect can be explained by the wider and deeper damage caused by the laser beam. Further, delayed axonal degeneration in partly damaged nerves has been suggested in earlier studies Su et al., 2019). Better energy penetration is confirmed by the fact that RA adventitia damage is more evident in the LA groups. ...
Article
Full-text available
Background. Renal artery denervation (RDN) has been proposed for resistant arterial hypertension. Beyond conventional radiofrequency (RF) ablation, there are emerging RDN technologies, including laser catheter ablation. Objective. We aimed at evaluating the local effects of laser ablation on the renal artery and perivascular nerve injury in comparison with radiofrequency ablation. Methods. Thirteen pigs (mean weight 36.7±4.7 kg, age 3 months) were divided into three groups: (1) laser ablation in normotensive pigs (LA; n = 3), (2) bipolar RF ablation in normotensive pigs (RF; n=7), (3) a sham group (SHAM; n=3). Transcatheter laser and RF ablations were performed under general anesthesia. After euthanasia, pathology and immunohistochemical studies were performed. Results. Artery wall and perivascular nerve lesions were found in the LA and RF groups. A lower rate of intimal microdissections was evaluated after laser ablation when compared with RF ablation (0 vs 1.5 [1;2.75] per artery; P<0.05). There was a numerical prevalence of nerves with tyrosine hydroxylase expression loss after laser RDN when compared with RF ablation (16.7 [4;18] vs 9.1 [0;18] per specimen). Conclusions. Laser ablation is non-inferior to RF ablation regarding perivascular nerve injury and is associated with less intimal layer damage.
... We have found no difference in the expression of TH between the animal groups. This finding is in line with a previous report showing that no significant TH expression decrease can be found shortly after RDN, and this might be explained by a delayed axonal degeneration in the necrotic nerves [20]. In the latter study, the authors stated that the level of TH expression cannot reflect the effectiveness of RDN in the acute phase. ...
Article
Full-text available
Objectives: We sought to assess acute changes in systemic and pulmonary hemodynamics and microscopic artery lesions following extended renal artery denervation (RDN). Background: RDN has been proposed to reduce sympathetic nervous system hyperactivation. Although the effects of RDN on systemic circulation and overall sympathetic activity have been studied, data on the impact of RDN on pulmonary hemodynamics is lacking. Methods: The study comprised 13 normotensive Landrace pigs. After randomization, 7 animals were allocated to the group of bilateral RDN and 6 animals to the group of a sham procedure (SHAM). Hemodynamic measures, cannulation, and balloon-based occlusion of the renal arteries were performed in both groups. In the RDN group, radiofrequency ablation was performed in all available arteries and their segments. An autopsy study of the renal arteries was carried out in both groups. Results: The analysis was performed on 12 pigs (6 in either group) since pulmonary thromboembolism occurred in one case. A statistically significant drop in the mean diastolic pulmonary artery pressure (PAP) was detected in the RDN group when compared with the SHAM group (change by 13.0 ± 4.4 and 10.0 ± 3.0 mmHg, correspondingly; P = 0.04). In 5 out of 6 pigs in the RDN group, a significant decrease in systemic systolic blood pressure was found, when compared with baseline (98.8 ± 17.8 vs. 90.2 ± 12.6 mmHg, P = 0.04), and a lower mean pulmonary vascular resistance (PVR) (291.0 ± 77.4 vs. 228.5 ± 63.8 dyn∗sec∗cm-5, P = 0.03) after ablation was found. Artery dissections were found in both groups, with prevalence in animals after RDN. Conclusions: Extensive RDN leads to a rapid and significant decrease in PAP. In the majority of cases, RDN is associated with an acute lowering of systolic blood pressure and PVR. Extended RDN is associated with artery wall lesions and thrombus formation underdiagnosed by angiography.
... In addition, some studies have been conducted in clinical and preclinical animal models to assess the safety of the procedure, yet some problems, such as a short observation period, limited research scope including renal function, imaging and morphology of renal artery, exist [4][5][6]. The effects of the RDN procedure on the renal artery still need further study because radiofrequency energy is delivered transmurally and can cause vascular wall injury, which may cause endothelial dysfunction and result in an imbalanced release of an increased level of the endothelium-derived relaxation factor nitric oxide (NO) and a decreased level of the endothelium-derived constriction factor endothelin-1 (ET-1), thereby increasing the risk of atherosclerosis [7]. In addition, studies suggest a number of mechanisms of atherosclerosis, including the thrombosis theory, lipid infiltration theory, damage reaction hypothesis, oxidative stress hypothesis, immune dysfunction hypothesis, homocysteine hypothesis and inflammatory reaction theory [8,9]. ...
... Our data indicated that eliminating the overactivated renal afferent and efferent sympathetic nervous in renal arteries by RDN significantly reduced SBP and DBP when compared with sham group. Some studies have shown that radiofrequency ablation energy targeting removing sympathetic nervous applied to the arterial wall induced transmural tissue coagulation and loss of endothelium in an acute phase, and transmural media damage coexisted with the presence of proteoglycan at 6 months after RDN [6,7,27]. Vascular endothelial cell injury can cause abnormal proliferation and migration, induce the change from a contractile phenotype to a synthetic phenotype of VSMCs, cause vascular wall thickening, and eventually lead to hypertension and atherosclerosis, which is a lipid-initiated, progressive, inflammatory intimal disease [28]. ...
Article
Full-text available
Background: Renal denervation (RDN) targeting the sympathetic nerves in the renal arterial adventitia as a treatment of resistant hypertension can cause endothelial injury and vascular wall injury. This study aims to evaluate the risk of atherosclerosis induced by RDN in renal arteries. Methods: A total of 15 minipigs were randomly assigned to 3 groups: (1) control group, (2) sham group, and (3) RDN group (n = 5 per group). All pigs were fed a high-fat diet (HFD) for 6 months after appropriate treatment. The degree of intimal thickening of renal artery and the conversion of endothelin 1 (ET-1) receptors were evaluated by histological staining. Western blot was used to assess the expression of nitric oxide (NO) synthesis signaling pathway, ET-1 and its receptors, NADPH oxidase 2 (NOX2) and 4-hydroxynonenal (4-HNE) proteins, and the activation of NF-kappa B (NF-κB). Results: The histological staining results suggested that compared to the sham treatment, RDN led to significant intimal thickening and significantly promoted the production of endothelin B receptor (ETBR) in vascular smooth muscle cells (VSMCs). Western blotting analysis indicated that RDN significantly suppressed the expression of AMPK/Akt/eNOS signaling pathway proteins, and decreased the production of NO, and increased the expression of endothelin system proteins including endothelin-1 (ET-1), endothelin converting enzyme 1 (ECE1), endothelin A receptor (ETAR) and ETBR; and upregulated the expression of NOX2 and 4-HNE proteins and enhanced the activation of NF-kappa B (NF-κB) when compared with the sham treatment (all p < 0.05). There were no significant differences between the control and sham groups (all p > 0.05). Conclusions: RDN aggravated endothelial endocrine dysfunction and intimal thickening, and increased the risk of atherosclerosis in renal arteries of HFD-fed pigs.