Figure - available from: Scientific Reports
This content is subject to copyright. Terms and conditions apply.
Analysis of RTK Phosphorylation levels. Image of RTK phosphorylation signals hybridized with cells lysate prepared from non-target transfected cells and GluIIβ knockout cells using Human RTK Phosphorylation Antibody Array Membrane (ab193662, Abcam) where 71 different anti-RTK antibodies have been spotted in duplicate, including 4 positive and 3 negative controls and 1 blank (A). Array signals were analyzed using “ImageJ software with the Protein Array Analyzer plugin16”. Values from duplicate spots were averaged and plotted (B), and the relative signal was calculated in GluIIβ knockout cells, compared to non-target transfected control cells (C).

Analysis of RTK Phosphorylation levels. Image of RTK phosphorylation signals hybridized with cells lysate prepared from non-target transfected cells and GluIIβ knockout cells using Human RTK Phosphorylation Antibody Array Membrane (ab193662, Abcam) where 71 different anti-RTK antibodies have been spotted in duplicate, including 4 positive and 3 negative controls and 1 blank (A). Array signals were analyzed using “ImageJ software with the Protein Array Analyzer plugin16”. Values from duplicate spots were averaged and plotted (B), and the relative signal was calculated in GluIIβ knockout cells, compared to non-target transfected control cells (C).

Source publication
Article
Full-text available
Glucosidase II (GluII) plays a major role in regulating post-translation modification of N-linked glycoproteins. We have previously reported that the expression of glucosidase II beta subunit (GluIIβ) was significantly increased in lung tumor tissues and its suppression triggers autophagy and/or apoptosis. Here, we investigated the role of GluIIβ i...

Citations

... Our previous studies have shown that lung cancer tissues exhibited an increased level of GluIIß compared to normal adjacent tissues [11] and hypothesize that this induction caused the cells to become resistant to death pathways as knockout of GluIIß caused cancer cell to undergo autophagy and/or apoptosis [13]. Knockout of GluIIß has also been demonstrated to inhibit growth and metastatic potential of lung cancer cell line [29]. The overall reduction of CAMs in GluIIß knockout cells may thus help explain the underlying mechanism of GluIIß overexpression in promoting tumor growth and progression as well as the suppression of anti-tumor immunity in its microenvironment through the overexpression of genes encoded for CAMs. ...
Article
Full-text available
Glucosidase II beta subunit (GluIIß), encoded from PRKCSH, is a subunit of the glucosidase II enzyme responsible for quality control of N-linked glycoprotein folding and suppression of GluIIß led to inhibitory effect of the receptor tyrosine kinase (RTKs) activities known to be critical for survival and development of cancer. In this study, we investigated the effect of GluIIß knockout on the global gene expression of cancer cells and its impact on functions of immune cells. GluIIß knockout lung adenocarcinoma A549 cell line was generated using CRISPR/Cas9-based genome editing system and subjected to transcriptomic analysis. Among 23,502 expressed transcripts, 1068 genes were significantly up-regulated and 807 genes greatly down-regulated. The KEGG enrichment analysis showed significant down-regulation of genes related extracellular matrix (ECM), ECM-receptor interaction, cytokine-cytokine receptor interaction and cell adhesion molecules (CAMs) in GluIIß knockout cells. Of 9 CAMs encoded DEG identified by KEGG enrichment analysis, real time RT-PCR confirmed 8 genes to be significantly down-regulated in all 3 different GluIIß knockout clones, which includes cadherin 4 (CDH4), cadherin 2 (CDH2), versican (VCAN), integrin subunit alpha 4 (ITGA4), endothelial cell-selective adhesion molecule (ESAM), CD274 (program death ligand-1 (PD-L1)), Cell Adhesion Molecule 1 (CADM1), and Nectin Cell Adhesion Molecule 3 (NECTIN3). Whereas PTPRF (Protein Tyrosine Phosphatase Receptor Type F) was significantly decreased only in 1 out of 3 knockout clones. Microscopic analysis revealed distinctively different cell morphology of GluIIβ knockout cells with lesser cytoplasmic and cell surface area compared to parental A549 cells and non-targeted transfected cells. Further investigations revealed that Jurkat E6.1 T cells or human peripheral blood mononuclear cells (PBMCs) co-cultured with GluIIß knockout A549 exhibited significantly increased viability and tumor cell killing activity compared to those co-cultured with non-target transfected cells. Analysis of cytokine released from Jurkat E6.1 T cells co-cultured with GluIIß knockout A549 cells showed significant increased level of angiogenin and significant decreased level of ENA-78. In conclusion, knockout of GluIIß from cancer cells induced altered gene expression profile that improved anti-tumor activities of co-cultured T lymphocytes and PBMCs thus suppression of GluIIß may represent a novel approach of boosting anti-tumor immunity.
... Moreover, Gu-Choul Shin et al. provided additional insight into the potential role of PRKCSH to drive tumorigenesis through its ability to enhance the inositol-requiring enzyme 1α signaling pathway and selectively confer resistance to ER stress in tumor-promoting factors 20 . More recently, it was reported that the lack of PRKCSH may activate STAT6 phosphorylation and p53 expression, resulting in G2/M arrest exposed to Nano-ZnO in lung cancer cells 19 . ...
Article
Full-text available
Protein kinase C substrate 80K-H (PRKCSH) plays a crucial role in the protein N-terminal glycosylation process, with emerging evidence implicating its involvement in tumorigenesis. To comprehensively assess PRKCSH’s significance across cancers, we conducted a pan-cancer analysis using data from The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), and Cancer Cell Line Encyclopedia (CCLE). We assessed aberrant PRKCSH mRNA and protein expression, examined its prognostic implications, and identified correlations with clinical features, tumor mutational burden (TMB), microsatellite instability (MSI), and tumor immunity across cancer types. We explored PRKCSH gene alterations, DNA methylation, and their impact on patient prognosis. Gene Set Enrichment Analysis (GSEA) and single-cell analysis revealed potential biological roles. Additionally, we investigated drug susceptibility and conducted Connectivity Map (Cmap) analysis. Key findings revealed that PRKCSH exhibited overexpression in most tumors, with a significant association with poor overall survival (OS) in six cancer types. Notably, PRKCSH expression demonstrated variations across disease stages, primarily increasing in advanced stages among eleven tumor types. Moreover, PRKCSH exhibited significant correlations with TMB in five cancer categories, MSI in eight, and displayed associations with immune cell populations in pan-cancer analysis. Genetic variations in PRKCSH were identified across 26 tumor types, suggesting favorable disease-free survival. Furthermore, PRKCSH methylation displayed a significant negative correlation with its expression in 27 tumor types, with a marked decrease compared to normal tissues in ten tumors. Cmap predicted 24 potential therapeutic small molecules in over four cancer types. This study highlights that PRKCSH, as a potential oncogene, may be a promising prognostic marker and therapeutic target of immunotherapy for a range of malignancies.
... β-G has been described as the key glycoprotein-processing enzyme that inhibits the expression of p53 in NSCLC cells [39]. Knockout of β-G was found to inhibit cell migration/metastasis and induce apoptosis and/or autophagy in NSCLC cells through the suppression of RTK signaling pathways [40]. ...
Article
Full-text available
Flavonoids are the largest group of polyphenols, represented by many compounds that exhibit high anticancer properties. Quercetin (Q) and its main derivatives (rutin, quercitrin, isoquercitrin, isorhamnetin, tamarixetin, rhamnetin, and hyperoside) in the class of flavonols have been documented to exert anticancer activity. Q has been shown to be useful in the treatment of non-small cell lung cancer (NSCLC), as demonstrated by in vitro/in vivo studies, due to its antitumor, anti-inflammatory, anti-proliferative, anti-angiogenesis, and apoptotic properties. Some flavonoids (flavone, anthocyanins, and proanthocyanidins) have been demonstrated to be effective in nicotineinduced NSCLC treatment. However, the molecular mechanisms of quercetin derivatives (QDs) in nicotine-induced NSCLC treatment remain unclear. Thus, this review aims to summarize the available literature on the therapeutic effects of QDs in nicotine-induced NSCLC.
... For instance, b-glucuronidase is preferentially concentrated within areas of necrosis in lung tumor tissues (176). Glucosidase IIb subunits are overexpressed in lung tumor tissues and promote cell growth and migration through receptor tyrosine kinase (RTK) signaling and the p53 pathway (177,178). Inhibition of these subunits can induce autophagy and apoptosis in lung cancer cells (90). The expression of NEU1 is increased in NSCLC tumors with p53 R273H mutation and is associated with poor prognosis (84). ...
Article
Full-text available
Protein glycosylation is a widespread posttranslational modification that can impact the function of proteins. Dysregulated protein glycosylation has been linked to several diseases, including chronic respiratory diseases (CRDs). CRDs pose a significant public health threat globally, affecting the airways and other lung structures. Emerging researches suggest that glycosylation plays a significant role in regulating inflammation associated with CRDs. This review offers an overview of the abnormal glycoenzyme activity and corresponding glycosylation changes involved in various CRDs, including chronic obstructive pulmonary disease, asthma, cystic fibrosis, idiopathic pulmonary fibrosis, pulmonary arterial hypertension, non-cystic fibrosis bronchiectasis, and lung cancer. Additionally, this review summarizes recent advances in glycomics and glycoproteomics-based protein glycosylation analysis of CRDs. The potential of glycoenzymes and glycoproteins for clinical use in the diagnosis and treatment of CRDs is also discussed.
... Previous studies have established that GANAB, also named α-subunit of glucosidase II (GIIα), is a key regulator of glycosylation. Khaodee et al. showed that it was essential for Glucosidase II (GluII) to regulate PTMs of N-linked glycoproteins in tumor progression [9]. GIIα catalyzes the trimming of the terminal glucose residues of N-glycan in glycoprotein processing coupled with quality control in the ER. ...
Article
Full-text available
Background Urothelial carcinoma (UC) is among the most prevalent malignancies. The muscle-invasive bladder cancer (MIBC) shows an invasive feature and has poor prognosis, while the non-muscle invasive bladder cancer (NMIBC) shows a better prognosis as compared with the MIBC. However, a significant proportion (10%–30%) of NMIBC cases progress to MIBC. Identification of efficient biomarkers for the prediction of the course of UC remains challenging nowadays. Recently, there is an emerging study showed that post-translational modifications (PTMs) by glycosylation is an important process correlated with tumor angiogenesis, invasion and metastasis. Herein, we reported a data-driven discovery and experimental validation of GANAB, a key regulator of glycosylation, as a novel prognostic marker in UC. Methods In the present study, we conducted immunohistochemistry (IHC) assay to evaluate the correlation between the expression levels of GANAB protein and the prognosis of UC in our cohort of 107 samples using whole slide image (WSI) analysis. In vitro experiments using RNAi were also conducted to investigate the biological functions of GANAB in UC cell lines. Results We observed that positive GANAB protein expression was significantly correlated with poor prognosis of UC in our cohort, with p-value of 0.0017 in Log-rank test. Notably, tumor cells at the invasive front of the tumor margin showed stronger GANAB expression than the tumor cells inside the tumor body in UCs. We further validated that the elevated expression levels of GANAB were significantly correlated with high grade tumors (p-values of 1.72 × 10–10), advanced stages (6.47 × 10–6), and elevated in luminal molecular subtypes. Moreover, knocking-down GANAB using RNAi in UM-UC-3 and T24 cells inhibited cell proliferation and migration in vitro. Knockdown of GANAB resulted in cell cycle arrest at G1 phase. We demonstrated that GANAB mediated HIF1A and ATF6 transcriptional activation in the ER stress signaling, and regulated the gene expression of cell cycle-related transcriptional factors E2F7 and FOXM1. Conclusions The elevated expression of GANAB is a novel indicator of poorer prognosis of UC. Our data suggests that GANAB is not only a new and promising prognostic biomarker for UC, but also may provide important cues for the development of PTM-based therapeutics for UC treatment.
... These data suggest the reduction of LDHA in Caco-2 cells upon RT2 treatment might trigger apoptosis in cells and contribute to the inhibition of cell proliferation and migration. Glucosidase 2 subunit beta or 80K-H protein (PRKCSH) is an endoplasmic reticulum (ER) glucosidase II enzyme involved in the post-translational modification of N-linked glycans [39]. The dissociation of glucose from glycoproteins by PRKCSH is necessary for protein folding and release by the endoplasmic reticulum. ...
... The dissociation of glucose from glycoproteins by PRKCSH is necessary for protein folding and release by the endoplasmic reticulum. The overexpression of PRKCSH, therefore, causes an EGFR/RTK and PI3K/AKT pathway activation which, in turn, induce cancer cells proliferation, migration as well as apoptosis or autophagy depletion [39][40][41]. The dosage-dependent suppression of PRKCSH expression was also found in RT2-treated Caco-2 cells (Table 1), suggesting RT2 is potentially involved in the induction of cell apoptosis in a similar way. ...
Article
Full-text available
New selective, efficacious chemotherapy agents are in demand as traditional drugs display side effects and face growing resistance upon continued administration. To this end, bioactive molecules such as peptides are attracting interest. RT2 is a cationic peptide that was used as an antimicrobial but is being repurposed for targeting cancer. In this work, we investigate the mechanism by which this peptide targets Caco-2 human colon cancer cells, one of the most prevalent and metastatic cancers. Combining label-free proteomics with bioinformatics data, our data explore over 1000 proteins to identify 133 proteins that are downregulated and 79 proteins that are upregulated upon treatment with RT2. These changes occur in a dose-dependent manner and suggest the former group are related to anticancer cell proliferation; the latter group is closely related to apoptosis levels. The mRNA levels of several genes (FGF8, PAPSS2, CDK12, LDHA, PRKCSH, CSE1L, STARD13, TLE3, and OGDHL) were quantified using RT-qPCR and were found to be in agreement with proteomic results. Collectively, the global change in Caco-2 cell protein abundance suggests that RT2 triggers multiple mechanisms, including cell proliferation reduction, apoptosis activation, and alteration of cancerous cell metabolism.
Article
Full-text available
PRKCSH, also known as Glucosidase II beta subunit (GluIIβ), is a crucial component of the endoplasmic reticulum (ER) quality control system for N-linked glycosylation, essential for identifying and eliminating misfolded proteins. Glucosidase II consists of the catalytic alpha subunit (GluIIα) and the regulatory beta subunit (GluIIβ), ensuring proper protein folding and release from the ER. The induction of PRKCSH in cancer and its interaction with various cellular components suggest broader roles beyond its previously known functions. Mutations in the PRKCSH gene are linked to autosomal dominant polycystic liver disease (ADPLD). Alternative splicing generates distinct PRKCSH isoforms, which can influence processes like epithelial-mesenchymal transition (EMT) and the proliferation of lung cancer cells. PRKCSH’s involvement in cancer is multifaceted, impacting cell growth, metastasis, and response to growth factors. Additionally, PRKCSH orchestrates cell death programs, affecting both autophagy and apoptosis. Its role in facilitating N-linked glycoprotein release from the ER is hypothesized to assist cancer cells in managing increased demand and ER stress. Moreover, PRKCSH modulates anti-tumor immunity, with its suppression augmenting NK cell and T cell activity, promising enhanced cancer therapy. PRKCSH’s diverse functions, including regulation of IGF1R and IRE1α, implicate it as a therapeutic target and biomarker in cancer immunotherapy. However, targeting its glucosidase II activity alone may not fully counteract its effects, suggesting broader mechanisms in cancer development. Further investigations are needed to elucidate PRKCSH’s precise role and validate its therapeutic potential in cancer treatment.
Article
The CRISPR/Cas9 system enables a versatile set of genomes editing and genetic-based disease modeling tools due to its high specificity, efficiency, and accessible design and implementation. In cancer, the CRISPR/Cas9 system has been used to characterize genes and explore different mechanisms implicated in tumorigenesis. Different experimental strategies have been proposed in recent years, showing dependency on various intrinsic factors such as cancer type, gene function, mutation type, and technical approaches such as cell line, Cas9 expression, and transfection options. However, the successful methodological approaches, genes, and other experimental factors have not been analyzed. We, therefore, initially considered more than 1,300 research articles related to CRISPR/Cas9 in cancer to finally examine more than 400 full-text research publications. We summarize findings regarding target genes, RNA guide designs, cloning, Cas9 delivery systems, cell enrichment, and experimental validations. This analysis provides valuable information and guidance for future cancer gene validation experiments.
Article
Full-text available
Background The quality of proteins destined for the secretory pathway is ensured by two distinct mechanisms in the endoplasmic reticulum (ER): productive folding of newly synthesized proteins, which is assisted by ER-localized molecular chaperones and in most cases also by disulfide bond formation and transfer of an oligosaccharide unit; and ER-associated degradation (ERAD), in which proteins unfolded or misfolded in the ER are recognized and processed for delivery to the ER membrane complex, retrotranslocated through the complex with simultaneous ubiquitination, extracted by AAA-ATPase to the cytosol, and finally degraded by the proteasome. Scope of review We describe the mechanisms of productive folding and ERAD, with particular attention to glycoproteins versus non-glycoproteins, and to yeast versus mammalian systems. Major conclusion Molecular mechanisms of the productive folding of glycoproteins and non-glycoproteins mediated by molecular chaperones and protein disulfide isomerases are well conserved from yeast to mammals. Additionally, mammals have gained an oligosaccharide structure-dependent folding cycle for glycoproteins. The molecular mechanisms of ERAD are also well conserved from yeast to mammals, but redundant expression of yeast orthologues in mammals has been encountered, particularly for components involved in recognition and processing of glycoproteins and components of the ER membrane complex involved in retrotranslocation and simultaneous ubiquitination of glycoproteins and non-glycoproteins. This may reflect an evolutionary consequence of increasing quantity or quality needs toward mammals. General significance The introduction of innovative genome editing technology into analysis of the mechanisms of mammalian ERAD, as exemplified here, will provide new insights into the pathogenesis of various diseases.