Fig 2 - uploaded by Jordan M Berg
Content may be subject to copyright.
A typical macroscale linear peristaltic pump design. A set of translating actuators cyclically compresses a flexible tube. The number of actuators may vary. Features of macroscale rotating peristaltic pumps also apply to microscale linear peristaltic pumps. Linear peristaltic pumps are used in applications such as drug delivery, when accurate flow rate control is needed 

A typical macroscale linear peristaltic pump design. A set of translating actuators cyclically compresses a flexible tube. The number of actuators may vary. Features of macroscale rotating peristaltic pumps also apply to microscale linear peristaltic pumps. Linear peristaltic pumps are used in applications such as drug delivery, when accurate flow rate control is needed 

Source publication

Context in source publication

Context 1
... Peristaltic pumps emulate the biological process of peristalsis, in which material is moved through 14 the esophagus or other anatomical passage by the contraction of smooth muscle in rhythmic waves. 15 Figure 1 is a schematic of a typical rotary peristaltic pump, as implemented at the macroscale, in 16 which a set of revolving contact elements creates a traveling compression wave in a section of 17 a flexible tube. Figure 2 is a schematic of a macroscale implementation of a linear peristaltic pump, 18 in which a number of translating piston actuators cyclically compress a flexible tube. In either case, 19 a moving boundary displaces fluid and induces a flow, placing peristaltic pumps in the class of 20 positive displacement pumps. Increasing the tube diameter or the pumping cycle frequency 21 increases the flow rate. A major attraction of macroscale peristaltic pumps is cleanliness. The fluid 22 is completely isolated from the pump components since it never leaves the tube. Furthermore, it is 23 a simple matter to change the tubing to avoid cross-contamination between fluids, and the tubing 24 material may be tailored to ensure compatibility with a particular application. The pumping action is 25 relatively gentle, making peristaltic pumps suitable for reactive liquids or cell suspensions. Also, the 26 pumps may be self-priming due to the low-pressure region created behind the moving constriction, 27 and the flow direction can be easily reversed. At the macroscale, use of rotary peristaltic pumps is 28 widespread, while linear peristaltic pumps are found mainly in niche applications, such as intrave- 29 nous drug ...

Similar publications

Article
Full-text available
The cell cycle has fundamental effects on cell cultures and their products. Tools to synchronize cultured cells allow the study of cellular physiology and metabolism at particular cell cycle phases. However, cells are most often arrested by methods that alter their homeostasis and are then cultivated in poorly controlled environments. Cell behavior...
Article
Full-text available
Microbial fuel cell (MFC) is a technology that is not only able to produce energy but also treats wastewater. The membraneless microbial fuel cell (ML-MFC) system was developed to avoid the use of membranes that are prone to clogging and are less applicable. The reactor was made and arranged in two chambers connected by pipes and the fluid flow rat...
Article
Full-text available
Currently, many microchips must rely on an external force (such as syringe pump, electro-hydrodynamic pump, and peristaltic pump, etc.) to control the solution in the microchannels, which probably adds manual operating errors, affects the accuracy of fluid manipulation, and enlarges the noise of signal. In addition, the reasonable integration of mi...
Article
Full-text available
Wang YH, Qu T, Wang XL, Yang RP. Drug Des Devel Ther. 2021;15:1623–1631. At the authors request, the Editor and Publisher of Drug Design, Development and Therapy wish to retract the published article. The authors informed the journal when attempting to scale up salvianolic acid microcapsule development, using the same process described in the artic...

Citations

... The absence of mechanical parts in contact with the fluid makes the roller-based pump adequate to biomedical applications [15]. The term peristaltic comes from a biological process, called peristalsis, in which a material is moved through the esophagus by contraction of the smooth muscle into rhythmic waves [16]. The fluid capacity of a roller-based peristaltic pump depends on the flexible tube, number of rollers and the pumping velocity. ...
Article
Microfluidic cell sorting has shown promising advantages over traditional bulky cell sorting equipment and has demonstrated wide-reaching applications in biological research and medical diagnostics. The most important characteristics of a microfluidic cell sorter are its throughput, ease of use, and integration of peripheral equipment onto the chip itself. In this review, we discuss the six most common methods for pumping fluid samples in microfluidic cell sorting devices, present their advantages and drawbacks, and discuss notable examples of their use. Syringe pumps are the most commonly used method for fluid actuation in microfluidic devices because they are easily accessible but they are typically too bulky for portable applications, and they may produce unfavorable flow characteristics. Peristaltic pumps, both on- and off-chip, can produce reversible flow but they suffer from pulsatile flow characteristics, which may not be preferable in many scenarios. Gravity-driven pumping, and similarly hydrostatic pumping, require no energy input but generally produce low throughputs. Centrifugal flow is used to sort cells on the basis of size or density but requires a large external rotor to produce centrifugal force. Electroosmotic pumping is appealing because of its compact size but the high voltages required for fluid flow may be incompatible with live cells. Emerging methods with potential for applications in cell sorting are also discussed. In the future, microfluidic cell sorting methods will trend toward highly integrated systems with high throughputs and low sample volume requirements.
Article
The demand for accurate control of the flowrate/pressure in chemical analytical systems has given rise to the adoption of mechatronic approaches in analytical instruments. A mechatronic device is a synergistic system which combines mechanical, electronic, computer and control components. In the development of portable analytical devices, considering the instrument as a mechatronic system can be useful to mitigate compromises made to decrease space, weight, or power consumption. Fluid handling is important for reliability, however, commonly utilized platforms such as syringe and peristaltic pumps are typically characterized by flow/pressure fluctuations and slow responses. Closed loop control systems have been used effectively to decrease the difference between desired and realized fluidic output. This review discusses the way control systems have been implemented for enhanced fluidic control, categorized by pump type. Advanced control strategies used to enhance the transient and the steady state responses are discussed, along with examples of their implementation in portable analytical systems. The review is concluded with the outlook that the challenge in adequately expressing the complexity and dynamics of the fluidic network as a mathematical model has yielded a trend towards the adoption of experimentally informed models and machine learning approaches.
Article
Flexible tubing is a key part of a lot of medical devices used in hospital, but may be subjected to a lot of various mechanical stresses that can led to the failure or to complications for the patients. The nature and causes of these mechanical stresses were listed for peristaltic pump tubing, infusion set tubing and catheters. Their consequences in term of tubing damages and particular contamination were reported. The impact of the chemical nature of the tubing, of its size and also the impact of various parameters of the clinical acts were reviewed. Last the consequences for the patient's health were discussed.
Article
Peristaltic pumping has been identified as a cause for protein particle formation during manufacturing of biopharmaceuticals. To give advice on tubing selection, we evaluated the physicochemical parameters and the propensity for tubing and protein particle formation using a monoclonal antibody (mAb) for five different tubings. After pumping, particle levels originating from tubing and protein differed substantially between the tubing types. An overall low shedding of tubing particles by wear was linked to low surface roughness and high abrasion resistance. The formation of mAb particles upon pumping was dependent on the tubing hardness and surface chemistry. Defined stretching of tubing filled with mAb solution revealed that aggregation increased with higher strain beyond the breaking point of the protein film adsorbed to the tubing wall. This is in line with the decrease in protein particle concentration with increasing tubing hardness. Furthermore, material composition influenced particle formation propensity. Faster adsorption to materials with higher hydrophobicity is suspected to lead to a higher protein film renewal rate resulting in higher protein particle counts. Overall, silicone tubing with high hardness led to least protein particles during peristaltic pumping. Results from this study emphasize the need of proper tubing selection to minimize protein particle generation upon pumping.
Article
Full-text available
We propose herein a method for estimating the mixing state of the contents of a peristaltic continuous mixing conveyor simulating the intestine, developed for mixing and conveying powders and liquids. This study serves to improve a previously proposed method for estimating the mixing state using a logistic regression model with the pressure and flow rate sensors installed in the device as inputs. Moreover, the estimation accuracy of the proposed method is better than that of the previous method. The generalizability of the proposed method is evaluated for four conditions in which the feeding order of the contents, powder, and liquid are changed. The feeding order is as follows: powder first, liquid first, and powder and liquid alternately. As a result, a highly accurate estimation of mixing is achieved under the condition wherein the powder component is in the unit adjacent to the lid, but not under the condition wherein the liquid component is fed first. It is speculated that this is because the movement of the powder component inside the device is more easily reflected by the pressure and flow rate sensors installed in the device than in the liquid component.
Chapter
In nature and technology, liquids are transported and distributed in a directed manner via pumping systems. Technical pumps often show signs of wear due to abrasion on moving parts, erosion and liquid contamination, which can lead to damage and unwanted noise. Innovative pump systems for electro mobility applications should have particularly low noise emission. In the course of evolution, various solutions have emerged in nature and can serve as a source of inspiration for the development of biomimetic pumping systems. In the last decade, the development of various biomimetic peristaltic systems highlight this pronounced biomimetic potential. These systems are based on principles behind bowel and esophageal peristalsis and incorporated within soft robots and medical devices. The main goal of this study was the biomimetic implementation of peristalsis into a flexible, silent, robust, energy efficient, space-saving and low cost technical application for the usage in combustion engines, electric engines and cooling systems. The biomimetic pump of the present study is based on the esophageal peristalsis and enables an easy, quiet and safe transport of a variety of Newtonian and non-Newtonian fluids with variable viscosities. The characterization of individual actuators as well as the entire peristaltic pump system in terms of closing rate and volume flow proved the influence of the actuator frequency and different peristaltic actuation patterns on the generated flow rate. The results show that the biomimetic flexible and elastic self-priming peristaltic pump based on silicone achieves sufficient flow rates of more than 250 l/h and thus offers an excellent alternative to conventional technical pumps in the field of electro mobility.
Conference Paper
A peristaltic continuous mixing conveyor that focuses on the mechanism of the intestine has been developed as a technology for the mixing and transport of a solid-liquid mixture and high viscosity fluids. The developed peristaltic continuous mixing conveyor succeeded in the mixing and transport of such mixtures in a previous study. A simple cyclic pattern is currently used as the movement pattern of the system, and the control method can be further improved. In this study, we aim to realize an intelligent mixing and generation of a conveyor pattern based on intestinal movement. The mixing state of content during activation was estimated through machine learning. The results from the time-series measurement data show that an internal mixing state in three units of the peristaltic continuous mixing conveyor was estimated.
Article
Full-text available
This overview presents the state‐of‐the‐art of peristaltic pump systems in biomimetics and living nature, and allows for a comparison by highlighting differences in structure and function, as well as advantages and drawbacks for technical implementation. For the first time the data of selected biological examples is collected in one study to give a comprehensive overview of the performance of biological peristaltic pumps. The developed biomimetic pumping systems not only mimic the biological principle and by this inherit its advantages; they also show the usability of the principle in various pumping applications and in medical research. A direct comparison of peristaltic pump systems in nature, biomimetics and technology highlights their similarities, differences and allows for proposing new fields of application. This article is protected by copyright. All rights reserved.