Fig 7 - uploaded by Nikolay Shilov
Content may be subject to copyright.
A flowchart of the square root algorithm f ltSQR for floating-point arithmetic 

A flowchart of the square root algorithm f ltSQR for floating-point arithmetic 

Source publication
Article
Full-text available
The paper presents (human-oriented) specification and (pen-and-paper) verification of the square root function. The function implements Newton method and uses a look-up table for initial approximations. Specification is done in terms of total correctness assertions with use of precise arithmetic and the mathematical square root $\sqrt{\dots}$, algo...

Context in source publication

Context 1
... algorithm f ltSQR to compute floating-point approximations of the square root function for floating-point argument is presented in Fig. 7. In this algorithm -mixSQR is the algorithm from Fig. 6, -an "input" variable A and the "output" variable B are of the floating-point type F , -another "input" variable Eps has the fix-point type T , -a variable Z is of the fix-point type T (but range within integers Int T ), -a machine operation ⊗ is the fix-point multiplication ...

Similar publications

Preprint
Full-text available
Newton’s Proposition VI, Problem I in principia is explained through an Excel File
Preprint
Full-text available
Application of nonlinearity continuation method to numerical solution of steady-state groundwater flow in variably saturated conditions is presented. In order to solve the system of nonlinear equations obtained by finite volume discretization of steady-state Richards equation, a series of problems with increasing nonlinearity are solved using the N...
Article
Full-text available
The objective of the current work is to invent and introduce the continuous version of Newton’s method. This scheme is used to establish some interesting properties with examples. We have plotted the fractal pattern graphs for a Newton-like method and a Damped Newton-like method in the discrete case and hence we have introduced a new concept of str...
Article
Full-text available
We calculate the Chern-Simons invariants of the twist knot orb-ifolds using the Schläfli formula for the generalized Chern-Simons function on the family of the twist knot cone-manifold structures. Following the general instruction of Hilden, Lozano, and Montesinos-Amilibia, we here present the concrete formulae and calculations. We use the Pythagor...
Conference Paper
Full-text available
Abstract—In bignum arithmetic, the cube root and higherorder root operations are conventionally treated as elementary functions, meaning that for them, correct rounding is not required, usually even without an error bound. In this paper we provide a unified algorithm RootRem to find the (arbitraryordered) root of bignums. This algorithm first finds...

Citations

... Здесь и далее мы используем следующую нотацию для пути по блок-схеме алгоритма между парой контрольных точек i и j: путь заключается в круглые скобки ( ), начинается с указания начальной контрольной точки i, заканчивается указанием конечной контрольной точки j, а между ними указываются знаки рёбер, исходящих из условных операторов на этом пути, по которым прошёл путь, или две точки "..", если путь не содержит условных операторов. Доказательство всех трёх перечисленных путей носит довольно-таки рутинный характер и было ранее представлено в [26]. ...
... В конце литературного обзора мы остановимся на сравнении нашего препринта [26] с настоящей статьей. В препринте [26] описаны, специфицированы и (вручную) верифицированы неадаптивные алгоритмы аппроксимации квадратного корня для чисел с фиксированной и плавающей запятой с накоплением ошибки вплоть (для чисел с фиксированной запятой) до 2δ D (2 + log 2 S ε ), где S "шаг" справочной таблицы начальных приближений для квадратного корня (в настоящей статье S = 1). ...
... В конце литературного обзора мы остановимся на сравнении нашего препринта [26] с настоящей статьей. В препринте [26] описаны, специфицированы и (вручную) верифицированы неадаптивные алгоритмы аппроксимации квадратного корня для чисел с фиксированной и плавающей запятой с накоплением ошибки вплоть (для чисел с фиксированной запятой) до 2δ D (2 + log 2 S ε ), где S "шаг" справочной таблицы начальных приближений для квадратного корня (в настоящей статье S = 1). В настоящей работе описаны, специфицированы и (вручную) верифицированы адаптивные алгоритмы аппроксимации квадратного корня, достигающие (для чисел с фиксированной запятой) точности 7 1 6 δ D , рассмотрено прототипирование модели чисел с фиксированной запятой и автоматизированное доказательство (в системе ACL2) существования массива начальных приближений квадратного корня. ...
Article
Full-text available
The project “Platform-independent approach to formal specification and verification of standard mathematical functions” is aimed onto the development of incremental combined approach to specification and verification of standard Mathematical functions like sqrt, cos, sin, etc. Platform-independence means that we attempt to design a relatively simple axiomatization of the computer arithmetics in terms of real arithmetics (i.e. the field \(\mathbb{R}\) of real numbers) but do not specify neither base of the computer arithmetics, nor a format of numbers representation. Incrementality means that we start with the most straightforward specification of the simplest case to verify the algorithm in real numbers and finish with a realistic specification and a verification of the algorithm in computer arithmetics. We call our approach combined because we start with manual (pen-and-paper) verification of the algorithm in real numbers, then use this verification as proof-outlines for a manual verification of the algorithm in computer arithmetics, and finish with a computer-aided validation of the manual proofs with a proof-assistant system (to avoid appeals to “obviousness” that are common in human-carried proofs). In the paper, we apply our platform-independent incremental combined approach to specification and verification of the standard Mathematical square root function. Currently a computer-aided validation was carried for correctness (consistency) of our fix-point arithmetics and for the existence of a look-up table with the initial approximations of the square roots for fix-point numbers.