Figure 2 - uploaded by Junaid Zubairi
Content may be subject to copyright.
88 Parameters mandated by FAA

88 Parameters mandated by FAA

Source publication

Context in source publication

Context 1
... FDR systems save up to 2,000 parameters in the digital memory however the FAA (Federal Aviation Administration) has mandated recording only 88 parameters that pertain to flight operation and safety aspects. When we analyzed the 88 parameters shown in Figure 2 for raw bandwidth demand, we found that only 1800 bps data rate is needed. ...

Citations

Article
Full-text available
There are thousands of flights carrying millions of passengers each day, having three or more Internet-connected devices with them on average. Usually, onboard devices remain idle for most of the journey (which can be of several hours), therefore, we can tap on their underutilized potential. Although these devices are generally becoming more and more resourceful, for complex services (such as related to machine learning, augmented/virtual reality, smart healthcare, and so on) those devices do not suffice standalone. This makes a case for multi-device resource aggregation such as through femto-cloud. As our first contribution, we present the utility of femto-cloud for aerial users. But for that sake, a reliable and faster Internet is required (to access online services or cloud resources), which is currently not the case with satellite-based Internet. That is the second challenge we try to address in our paper, by presenting an adaptive beamforming-based solution for aerial Internet provisioning. However, on average, most of the flight path is above waters. Given that, we propose that beamforming transceivers can be docked on stationery ships deployed in the vast waters (such as the ocean). Nevertheless, certain services would be delay-sensitive, and accessing their on-ground servers or cloud may not be feasible (in terms of delay). Similarly, certain complex services may require resources in addition to the flight-local femto-cloud. That is the third challenge we try to tackle in this paper, by proposing that the traditional fog computing (which is a cloud-like but localized pool of resources) can also be extended to the waters on the ships harboring beamforming transceivers. We name it Floating Fog. In addition to that, Floating Fog will enable several new services such as live black-box. We also present a cost and bandwidth analysis to highlight the potentials of Floating Fog. Lastly, we identify some challenges to tackle the successful deployment of Floating Fog.
Article
Full-text available
High-speed quality Internet provision for aircraft passengers is thought to be one of the major unresolved challenges for ubiquitous Internet provision. This article aims to resolve the problem of airborne Internet access with high quality of service for modern Internet of things devices. Large remote regions in the ocean along the busy air routes (e.g. Atlantic Ocean) require high-speed, reliable, and low-cost airborne Internet (i.e. Internet provision to the aircraft) to manage various delay- and throughput-sensitive applications. Conventional satellite-based solutions can be an alternate for Internet provision in such far-flung areas; but, such solutions are lacking quality of service (with longer delays and low bandwidth) and are significantly costly. Fortunately, the underwater optical fiber cables deployed across the oceans pass along the same busy air routes. This infrastructure of underwater optical fiber cables can be exploited for Internet backbone providing high quality of service for wireless Internet provision to the commercial aircraft. Dedicated stationary ships deployed along these underwater optical fiber cables can be utilized for Internet provision, navigation, and security to ships and aircraft. This article not only proposes the networking infrastructure of the submarine cable-based airborne Internet access architecture but also presents a novel routing scheme for airborne ad hoc networks. Also, we analyze quality of service provision as compared to other existing techniques. Our simulation results show that our proposed solution outperforms other existing schemes for airborne Internet service provision, in the presence of high mobility and dynamic topology changes.