Article

Pre-B Lymphocyte Protein 3 (VPREB3) Expression in the Adrenal Cortex: Precedent for non-Immunological Roles in Normal and Neoplastic Human Tissues

Authors:
  • Tohoku Medical and Phamaceutical University
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

The pre-B lymphocyte protein 3 (VPREB3) is expressed during B-cell differentiation and in subsets of mature B-lymphocytes and is mainly found in bone marrow and lymphoid tissue germinative centers. So far, its function in B-cells remains to be clarified. The mRNA of VPREB3 was previously detected in aldosterone-producing adenomas (APA), however further information about this protein in human adrenocortical cells and tissues is currently unavailable. Therefore, in the present study we for the first time investigate the protein expression of VPREB3 in human adrenocortical tissues. In addition, we approach the previously suggested similarities in expression patterns of aldosterone-producing cells and Purkinje neurons. Immunohistochemical analysis of VPREB3 was performed in 13 non-pathological adrenals (NA), 6 adrenal glands with idiopathic hyperaldosteronism (IHA), 18 APA, 5 cortisol-producing adenomas (CPA) and 5 non-pathological human cerebellum specimens. The mRNA levels of VPREB3, steroidogenic-enzymes and other aldosterone biosynthesis markers were detected in 53 APA samples using real-time RT-PCR (qPCR) and compared to the clinical data of APA patients. In our results, the VPREB3 protein was diffusely detected in APA, partially or weakly detected in CPA, and immunolocalized in the zona glomerulosa of NA and IHA, as well as in the cytoplasm of cerebellar Purkinje cells. In APA, VPREB3 mRNA levels were significantly correlated to plasma aldosterone (P=0.026; R=0.30), KCNJ5 mutations (P=0.0061; mutated 34:19 wild-type), CYP11B2 (P<0.0001; R=0.65), Purkinje cell protein 4 (PCP4; P<0.0001; R=0.53) and voltage-dependent calcium channels CaV1.3 (P=0.023; R=0.31) and CaV3.2 (P=0.0019; R=0.42). Based on our data, we hypothesize a possible role for VPREB3 in aldosterone biosynthesis, and present ideas for future functional studies.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... VPREB3 (pre-B lymphocyte protein 3) is expressed in APAs and adjacent tissues, but not in cortisol-producing adenomas (see data in the online-only Data Supplement). 51 In the normal cortex, it occurs mainly in the normal ZG, with only few positive cells in ZF. 52 The colocalization of VPREB3 with CYP11B2 and the increased expression VPREB3 in H295R cells after angiotensin II stimulation suggest that VPREB3 could be a marker of aldosterone-producing cells. 52 Nevertheless, the expression of VPREB3 in some ZF cells and the correlation between expression of VPREB3 and HSD3B2, but not HSD3B1, does not support VPREB3 as marker of ZG and APA cells. ...
... 51 In the normal cortex, it occurs mainly in the normal ZG, with only few positive cells in ZF. 52 The colocalization of VPREB3 with CYP11B2 and the increased expression VPREB3 in H295R cells after angiotensin II stimulation suggest that VPREB3 could be a marker of aldosterone-producing cells. 52 Nevertheless, the expression of VPREB3 in some ZF cells and the correlation between expression of VPREB3 and HSD3B2, but not HSD3B1, does not support VPREB3 as marker of ZG and APA cells. ...
... We observed that the B cells in KP mut tumors exhibited different phenotypes from those in KP loss tumors ( Figure 4A). We divided B cells into Pro-B cell, Pre-B cell, Pre-BCR, Naive B cell, Germinal center B cell, and Plasma cell based on the reported signature genes ( Figure 4A,B) [33][34][35][36][37][38]. Subsequently, the B cell compositions of the KP mut -Early, KP mut -Late, and KP loss -Late groups were analyzed ( Figure 4C). ...
Article
Full-text available
Pancreatic ductal adenocarcinoma (PDAC) is a devastating malignant disease with a dismal prognosis. In the past decades, a plethora of genetically engineered mouse models (GEMMs) with autochthonous pancreatic tumor development have greatly facilitated studies of pancreatic cancer. Commonly used GEMMs of PDAC often harbor the oncogenic KRAS driver mutation (KrasG12D), in combination with either p53 mutation by knock-in strategy (Trp53R172H) or p53 loss by conditional knockout (Trp53cKO) strategy, in pancreatic cell lineages. However, the systematic comparison of the tumor microenvironment between KrasG12D; Trp53R172H (KPmut) mouse models and KrasG12D; Trp53cKO (KPloss) mouse models is still lacking. In this study, we conducted cross-dataset single-cell RNA-sequencing (scRNA-seq) analyses to compare the pancreatic tumor microenvironment from KPmut mouse models and KPloss mouse models, especially focusing on the cell compositions and transcriptomic phenotypes of major cell types including cancer cells, B cells, T cells, granulocytes, myeloid cells, cancer-associated fibroblasts, and endothelial cells. We identified the similarities and differences between KPmut and KPloss mouse models, revealing the effects of p53 mutation and p53 loss on oncogenic KRAS-driven pancreatic tumor progression.
... In terms of each gene, the higher expression of all seven ISCIRGs was positively associated with shorter OS time. The major function of the seven genes included: LILRA1 is to regulate immune responses by interacting with MHC class I ligands [31]; NRGN is a postsynaptic protein kinase substrate that binds calmodulin in the absence of calcium [32]; VPREB3 and IGHM is thought to be involved in B cell maturation [33], mutation or absence can cause either an arrest or a severe impairment at the pro-B cell stage [34,35]; MT-ND6 involved in mitochondrial electron transport, NADH to ubiquinone and mitochondrial respiratory chain complex I assembly [36]; EMP2 regulates cell membrane composition, and up-regulation of this gene has been linked to cancer progression in multiple different tissues [37,38]; and FFAR1 involved in the metabolic regulation of insulin secretion [39]. In terms of the synergies of these genes, the results of PPI network analysis and functional enrichment analysis for the seven DEGs showed that these genes were mainly enriched in mitochondrial electron transport and oxidative phosphorylation. ...
Article
Full-text available
Acute lymphoblastic leukemia (ALL) is a common and life-threatening hematologic malignancy, its occurrence and progression are closely related to immune/stromal cell infiltration in the bone marrow (BM) microenvironment. However, no studies have described an immune/stromal cell infiltration-related gene (ISCIRG)-based prognostic signature for ALL. A total of 444 patients involving 437 bulk and 7 single-cell RNA-seq datasets were included in this study. Eligible datasets were searched and reviewed from the database of TCGA, TARGET project and GEO. Then an integrated bioinformatics analysis was performed to select optimal prognosis-related genes from ISCIRGs, construct a nomogram model for predicting prognosis, and assess the predictive power. After LASSO and multivariate Cox regression analyses, a seven ISCIRGs-based signature was proved to be able to significantly stratify patients into high- and low-risk groups in terms of OS. The seven genes were confirmed that directly related to the composition and status of immune/stromal cells in BM microenvironment by analyzing bulk and single-cell RNA-seq datasets. The calibration plot showed that the predicted results of the nomogram were consistent with the actual observation results of training/validation cohort. This study offers a reference for future research regarding the role of ISCIRGs in ALL and the clinical care of patients.
... The genes upregulated more than 4-fold except steroidogenic genes in APCC-cluster-C3 were HOPX (HOP homeobox), VPREB3 (v-set pre-B cell surrogate light chain 3), and COL15A1 (Collagen Type XV 1 Chain) (Table S6) (22). These genes except COL15A1 were reported to be upregulated in APA as well (40,41). APCC and APA had several upregulated genes in common, which was consistent with our hypothesis that APCC is a precursor of some APAs. ...
Article
Full-text available
Context: The adrenal cortex consists of zona glomerulosa (ZG), fasciculata (ZF), and reticularis. Aldosterone-producing cell clusters that strongly express aldosterone synthase (CYP11B2) are frequently found in adult adrenals and harbor somatic mutations that are also detected in aldosterone-producing adenomas (APAs). Primary aldosteronism is mainly caused by APAs or idiopathic hyperaldosteronism (IHA). We presume that APCCs are causing IHA and are precursors of APAs. However, the gene expression characteristics and especially the development of APCC are not well understood. Objective: This study aimed to analyze the transcriptome of APCC at single-cell resolution and infer the developmental trajectory. Methods: Single-cell RNA sequencing (scRNA-seq) of two adult adrenals was performed. Results: Immunohistochemical analyses confirmed the two adrenals had APCCs. scRNA-seq data of 2,928 adrenal cells were obtained and 1,765 adrenocortical cells were identified based on unsupervised clustering and the marker gene expression. The adrenocortical cells were divided into 6 clusters, of which three clusters (923 cells) were composed of APCC/ZG cells. By further sub-clustering, the APCC/ZG cells were divided into three clusters (clusters C1, C2, and C3), we finally identified APCC-cluster (C3) and ZG-cluster (C1). Cluster C2 seemed to be ZG-to-ZF transitional cells. RNA velocity analysis inferred the developmental direction from cluster ZG-cluster-C1 to APCC-cluster-C3. The scRNA-seq additionally revealed that many CYP11B2-positive cells were positive for CYP11B1 and/or CYP17A1, which were essential for cortisol but not for aldosterone production. Conclusions: Our results revealed the gene expression characteristics of APCC at single-cell resolution and show that some ZG cells remodel to APCC.
... The complete pre-BCR plays a vital role in the development of mammalian B lymphocytes (Rodig et al., 2010). Felizola et al. (2015) showed that VPREB3 is expressed in B cell differentiation and mature B lymphocyte subsets. Therefore, circRNA4338 would be involved in the immune response to coccidia infection. ...
Article
Full-text available
Coccidiosis is an important intestinal parasitic disease that causes great economic losses to the global poultry production industry. Circular RNAs (circRNAs) are long non-coding RNAs that play important roles in various infectious diseases and inflammatory responses. However, the expression profiles and functions of circRNAs during Eimeria tenella (E. tenella) infection remain unclear. In this study, high-throughput sequencing was carried out to detect circRNAs in chicken cecal tissues from the control (JC), resistant (JR), and susceptible (JS) groups on day 4.5 postinfection (pi), respectively. A total of 104 circRNAs were differentially expressed, including 47 circRNAs between the JS and JC groups, 38 between the JR and JS groups, and 19 between the JR and JC groups. Functional analyses indicated that these differentially expressed circRNAs were involved in pathways related to E. tenella infection; the adaptive immune response was enriched in the JS vs JC group, the NF-kappa B signaling and natural killer cell-mediated cytotoxicity pathways were enriched in the JS vs JC and JR vs JC groups, while the B cell receptor signaling pathway was enriched in only the JR vs JC group. Moreover, the coexpression network of differentially expressed circRNAs and mRNAs suggested that circRNA2202 and circRNA0759 associated with DTX1 in the JS vs JC group, circRNA4338 associated with VPREB3 and CXCL13L3 in the JR vs JC group, and circRNA2612 associated with IL8L1 and F2RL2 in the JR vs JS group were involved in the immune response upon E. tenella infection. In conclusion, our results provide valuable information on the circRNAs involved in the progression of chicken E. tenella infection and advance our understanding of the circRNA regulatory mechanisms of host resistance and susceptibility to E. tenella infection in chickens.
... Aldosterone-producing adenoma. Mutations in KCNJ5 (potassium channel) have been documented in patients with aldosterone-producing adenomas in approximately 40% of patients (151) from European cohorts, though much higher rates are reported in patients from Japan and Asia (152,153). These mutations lead to increased sodium conductance and cellular depolarization leading to calcium influx, increased intracellular calcium signaling, and increased CYP11B2 mRNA expression with increased aldosterone production and glomerulosa cell proliferation (123). ...
Article
Full-text available
An adrenal incidentaloma is now established as a common endocrine diagnosis that requires a multidisciplinary approach for effective management. The majority of patients can be reassured and discharged, but a personalized approach based upon image analysis, endocrine workup and clinical symptoms and signs are required in every case. ACC remains a real concern but is restricted to <2% of all cases. Functional AI lesions are commoner (but still probably <10% of total) and the greatest challenge remains the diagnosis and optimum management of autonomous cortisol secretion. Modern-day surgery has improved outcomes and novel radiological and urinary biomarkers will improve early detection and patient stratification in future years to come.
... Previous study reports that differential POU2AF1 expression is likely to reflect ongoing stimulation and active accessory signaling in chronic lymphocytic leukemia cells [31]. The pre-B lymphocyte protein 3 (VPREB3) is expressed during B cell differentiation and in subsets of mature B lymphocytes [32]. It is reported that VPREB3 is present in bone marrow, where B cell maturation begins [33]. ...
Article
Primary aldosteronism is the most common single cause of hypertension and is potentially curable when only one adrenal gland is the culprit. The importance of primary aldosteronism to public health derives from its high prevalence but huge under-diagnosis (estimated to be <1% of all affected individuals), despite the consequences of poor blood pressure control by conventional therapy and enhanced cardiovascular risk. This state of affairs is attributable to the fact that the tools used for diagnosis or treatment are still those that originated in the 1970-1990s. Conversely, molecular discoveries have transformed our understanding of adrenal physiology and pathology. Many molecules and processes associated with constant adrenocortical renewal and interzonal metamorphosis also feature in aldosterone-producing adenomas and aldosterone-producing micronodules. The adrenal gland has one of the most significant rates of non-silent somatic mutations, with frequent selection of those driving autonomous aldosterone production, and distinct clinical presentations and outcomes for most genotypes. The disappearance of aldosterone synthesis and cells from most of the adult human zona glomerulosa is the likely driver of the mutational success that causes aldosterone-producing adenomas, but insights into the pathways that lead to constitutive aldosterone production and cell survival may open up opportunities for novel therapies.
Article
Full-text available
Aldosterone-producing adenomas (APAs) are the commonest curable cause of hypertension. Most have gain-of-function somatic mutations of ion channels or transporters. Herein we report the discovery, replication and phenotype of mutations in the neuronal cell adhesion gene CADM1. Independent whole exome sequencing of 40 and 81 APAs found intramembranous p.Val380Asp or p.Gly379Asp variants in two patients whose hypertension and periodic primary aldosteronism were cured by adrenalectomy. Replication identified two more APAs with each variant (total, n = 6). The most upregulated gene (10- to 25-fold) in human adrenocortical H295R cells transduced with the mutations (compared to wildtype) was CYP11B2 (aldosterone synthase), and biological rhythms were the most differentially expressed process. CADM1 knockdown or mutation inhibited gap junction (GJ)-permeable dye transfer. GJ blockade by Gap27 increased CYP11B2 similarly to CADM1 mutation. Human adrenal zona glomerulosa (ZG) expression of GJA1 (the main GJ protein) was patchy, and annular GJs (sequelae of GJ communication) were less prominent in CYP11B2-positive micronodules than adjacent ZG. Somatic mutations of CADM1 cause reversible hypertension and reveal a role for GJ communication in suppressing physiological aldosterone production.
Article
Full-text available
In the mammalian immune system, the surrogate light chain (SLC) shapes the antibody repertoire during B cell development by serving as a checkpoint for production of functional heavy chains (HC). Structural studies indicate that tail regions of VpreB contact and cover the third complementarity-determining region of the HC (CDR H3). However, some species, particularly bovines, have CDR H3 regions that may not be compatible with this HC-SLC interaction model. With immense structural and genetic diversity in antibody repertoires across species, we evaluated the genetic origins and sequence features of surrogate light chain components. We examined tetrapod genomes for evidence of conserved gene synteny to determine the evolutionary origin of VpreB1, VpreB2, and IGLL1, as well as VpreB3 and pre-T cell receptor alpha (PTCRA) genes. We found the genes for the SLC components (VpreB1, VpreB2, and IGLL1) only in eutherian mammals. However, genes for PTCRA occurred in all amniote groups and genes for VpreB3 occurred in all tetrapod groups, and these genes were highly conserved. Additionally, we found evidence of a new VpreB gene in non-mammalian tetrapods that is similar to the VpreB2 gene of eutherian mammals, suggesting VpreB2 may have appeared earlier in tetrapod evolution and may be a precursor to traditional VpreB2 genes in higher vertebrates. Among eutherian mammals, sequence conservation between VpreB1 and VpreB2 was low for all groups except rabbits and rodents, where VpreB2 was nearly identical to VpreB1 and did not share conserved synteny with VpreB2 of other species. VpreB2 of rabbits and rodents likely represents a duplicated variant of VpreB1 and is distinct from the VpreB2 of other mammals. Thus, rabbits and rodents have two variants of VpreB1 (VpreB1-1 and VpreB1-2) but no VpreB2. Sequence analysis of VpreB tail regions indicated differences in sequence content, charge, and length; where repertoire data was available, we observed a significant relationship between VpreB2 tail length and maximum DH length. We posit that SLC components co-evolved with immunoglobulin HC to accommodate the repertoire – particularly CDR H3 length and structure, and perhaps highly unusual HC (like ultralong HC of cattle) may bypass this developmental checkpoint altogether.
Article
Purpose of review: Aldosterone regulation in the adrenal plays an important role in blood pressure. The commonest curable cause of hypertension is primary aldosteronism. Recently, mutations in novel genes have been identified to cause primary aldosteronism. Elucidating the mechanism of action of these genetic abnormalities may help understand the cause of primary aldosteronism and the physiological regulation of aldosterone in the zona glomerulosa. Recent findings: KCNJ5, ATP1A1, ATP2B3, CACNA1D, CTNNB1, and CACNA1H mutations are causal of primary aldosteronism. ARMC5 may cause bilateral lesions resulting in primary aldosteronism.LGR5, DACH1, and neuron-specific proteins are highly expressed in the zona glomerulosa and regulate aldosterone production. Summary: Most mutations causing primary aldosteronism are in genes encoding cation channels or pumps, leading to increased calcium influx. Genotype-phenotype analyses identified two broad subtypes of aldosterone-producing adenomas (APAs), zona fasciculata-like and zona glomerulosa-like, and the likelihood of under-diagnosed zona glomerulosa-like APAs because of small size. Zona fasciculata-like APAs are only associated with KCNJ5 mutations, whereas zona glomerulosa-like APAs are associated with mutations in ATPase pumps, CACNA1D, and CTNNB1. The frequency of APAs, and the multiplicity of causal mutations, suggests a pre-existing drive for these mutations. We speculate that these mutations are selected for protecting against tonic inhibition of aldosterone in human zona glomerulosa, which express genes inhibiting aldosterone production.
Article
Full-text available
Purpose: The aim of this study was to identify the genetic cause of early-onset autosomal recessive cerebellar ataxia associated with retinal dystrophy in a consanguineous family. Methods: An affected 6-month-old child underwent neurological and ophthalmological examinations. Genetic analyses included homozygosity mapping, copy number analysis, conventional polymerase chain reaction, Sanger sequencing, quantitative polymerase chain reaction, and whole-exome sequencing. Expression analysis of GRID2 was performed by quantitative polymerase chain reaction and immunohistochemistry. Results: A homozygous deletion of exon 2 of GRID2 (p.Gly30_Glu81del) was identified in the proband. GRID2 encodes an ionotropic glutamate receptor known to be selectively expressed in cerebellar Purkinje cells. Here, we demonstrated GRID2 expression in human adult retina and retinal pigment epithelium. In addition, Grid2 expression was demonstrated in different stages of murine retinal development. GRID2 immunostaining was shown in murine and human retina. Whole-exome sequencing in the proband did not provide arguments for other disease-causing mutations, supporting the idea that the phenotype observed represents a single clinical entity. Conclusion: We identified GRID2 as an underlying disease gene of early-onset autosomal recessive cerebellar ataxia with retinal dystrophy, expanding the clinical spectrum of GRID2 deletion mutants. We demonstrated for the first time GRID2 expression and localization in human and murine retina, providing evidence for a novel functional role of GRID2 in the retina.
Article
Full-text available
Context: Therapeutic management of primary aldosteronism requires accurate differentiation between aldosterone-producing adenoma (APA) and idiopathic hyperaldosteronism (IHA). However, little is known about the molecular features that delineate the difference between APA and IHA. Two different isoforms of 3β-hydroxysteroid dehydrogenase (HSD3B1 and HSD3B2) are thought to be expressed in the human adrenal gland, but the lack of isoform-specific antibody has so far hampered mapping of these isoforms in APA and IHA. Objectives: The aim of our study is to develop and characterize isoform-specific monoclonal antibodies against HSD3B1 and HSD3B2. Using these antibodies, we determined for the first time the immunolocalization of HSD3B1 and HSD3B2 in normal human adrenal cortex as well as in adrenal specimens from APA and IHA. Results: Immunohistochemical analysis with isoform-specific antibodies revealed zone-specific expression of HSD3B1 and HSD3B2 in the adrenal cortex. HSD3B1 immunoreactivities were essentially confined to the zona glomerulosa (ZG), in which aldosterone is produced. In contrast, HSD3B2 was not confined to the ZG but was found across the zona fasciculata, which is where cortisol is produced. Moreover, immunohistopathological analysis of primary aldosteronism revealed a previously uncharacterized difference between APA and IHA. Notably, hyperplasia of ZG seen for IHA was accompanied by a robust expression of ZG isoform HSD3B1. In contrast, tumor cells in APA were not immunopositive to HSD3B1. Rather, a strong and dominant expression of HSD3B2 characterized APA. Moreover, perhaps due to compensatory responses to excess aldosterone, APA had an adjacent ZG whose immunoreactivities to HSD3B1 and HSD3B2 were profoundly reduced. Conclusions: Isoform-specific monoclonal antibodies against HSD3B1 and HSD3B2 may be of great value for immunohistochemical differentiation between APA and IHA.
Article
Full-text available
At least 5% of individuals with hypertension have adrenal aldosterone-producing adenomas (APAs). Gain-of-function mutations in KCNJ5 and apparent loss-of-function mutations in ATP1A1 and ATP2A3 were reported to occur in APAs. We find that KCNJ5 mutations are common in APAs resembling cortisol-secreting cells of the adrenal zona fasciculata but are absent in a subset of APAs resembling the aldosterone-secreting cells of the adrenal zona glomerulosa. We performed exome sequencing of ten zona glomerulosa-like APAs and identified nine with somatic mutations in either ATP1A1, encoding the Na(+)/K(+) ATPase α1 subunit, or CACNA1D, encoding Cav1.3. The ATP1A1 mutations all caused inward leak currents under physiological conditions, and the CACNA1D mutations induced a shift of voltage-dependent gating to more negative voltages, suppressed inactivation or increased currents. Many APAs with these mutations were <1 cm in diameter and had been overlooked on conventional adrenal imaging. Recognition of the distinct genotype and phenotype for this subset of APAs could facilitate diagnosis.
Article
Full-text available
There is a tight structural relation and functional co-operation between the nervous, endocrine and immune systems. A dense network of soluble neuro-endocrine and immune mediators exists to ensure close interactions. These hormones, cytokines and neurotransmitters all interact through positive and negative feed-forward and feedback loops. The mediators, once considered specific to the central nervous system (CNS), the endocrine system (ES) or the immune system (IS), do in fact act in all three systems, forming that way the United neuro-endocrine-immune system. The complex neuro-endocrine-immune networks operate tinder both physiological and pathological conditions. In the presented study microscopical analyses of selected immune organs (the thymus spleen, inguinal and subscapular lymph nodes) and of the adrenal-land of the neurodeficient Lurcher mutant mice and control C3H mice were performed. In the neurodeficient mice the morphology of the immune organs was impaired. The changes followed in the spleen, especially the increased number of megakaryocytes, lead to the hypothesis of enhanced extramedullar hemopoiesis ill the neurodeficient Lurcher Mutant mice. Histopathological analysis of the adrenal gland showed the relative hypertrophy of the adrenal medulla. Regarding the adrenal cortex, the three cortical zones, zona glomerulus, fasciculata and reticularis, are difficult to be distinguished. It has been supposed that structural changes of adrenal medulla Could document the increased secretion of catecholamines in the neurodeficient animals. Our observations confirm the idea of the tight cooperation of neuro-endocrine-immune structures and contribute to its better understanding, specifically in the conditions of postnatally progressing neurodeficiency.
Article
Full-text available
GRID2 is a member of the ionotropic glutamate receptor family of excitatory neurotransmitter receptors. GRID2 encodes the glutamate receptor subunit delta-2, selectively expressed in cerebellar Purkinje cells. The phenotype associated with loss of GRID2 function was described only in mice until now, characterized by different degrees of cerebellar ataxia and usually relatively mild abnormalities of the cerebellum. This work describes for the first time the human phenotype associated with homozygous partial deletion of GRID2 in 3 children in one large consanguineous Turkish family. Homozygous deletion of exons 3 and 4 of GRID2 (94 153 589-94 298 037 bp) in the proband and similarly affected cousins, and heterozygous deletions in parental DNA were shown using Affymetrix® 6.0 single-nucleotide polymorphism array, confirmed by real-time polymerase chain reaction. The phenotype includes nystagmus, hypotonia with marked developmental delay in gross motor skills in early infancy followed by a static encephalopathy course with development of cerebellar ataxia, oculomotor apraxia, and pyramidal tract involvement.
Article
Full-text available
Aldosterone, which plays a central role in the regulation of blood pressure, is produced by zona glomerulosa (ZG) cells of the adrenal gland. When dysregulated, aldosterone is pathogenic and contributes to the development and progression of cardiovascular and renal disease. Although sustained production of aldosterone requires persistent Ca2+ entry through low-voltage activated Ca2+ channels, isolated ZG cells are considered nonexcitable, with recorded membrane voltages that are too hyperpolarized to permit Ca2+ entry. Here, we show that mouse ZG cells within adrenal slices spontaneously generate membrane potential oscillations of low periodicity. This innate electrical excitability of ZG cells provides a platform for the production of a recurrent Ca2+ signal that can be controlled by Ang II and extracellular potassium, the 2 major regulators of aldosterone production. We conclude that native ZG cells are electrical oscillators, and that this behavior provides what we believe to be a new molecular explanation for the control of Ca2+ entry in these steroidogenic cells.
Article
Full-text available
18-Oxocortisol (18-oxoF) is a derivative of cortisol (F) that is produced by aldosterone synthase (CYP11B2). The potential for this steroid as a biomarker for differentiating patients with aldosterone-producing adenoma (APA) from those with idiopathic hyperaldosteronism (IHA) has not been examined. We measured 18-oxoF, aldosterone, and F in plasma from adrenal vein sampling (AVS) of patients with primary aldosteronism. We compared 18-oxoF levels and 18-oxoF/F ratios for their potential to differentiate APA from IHA. This study measured 18-oxoF, F, and aldosterone in AVS obtained from patients with unilateral APA (14 cases) or bilateral IHA (seven cases, 14 samples total) using liquid chromatography-tandem mass spectrometry and RIA analyses. The levels of 18-oxoF and the ratios of 18-oxoF/F, before and after ACTH stimulation, were significantly higher in blood-draining APA than in those from the contralateral adrenal glands and from adrenal glands with IHA. The 18-oxoF levels and ratios of 18-oxoF/F in AVS samples can be a clinically useful biomarker for differentiating APA from IHA and for determining the localization or lateralization of APA in patients with primary aldosteronism.
Article
Full-text available
Endocrine tumors such as aldosterone-producing adrenal adenomas (APAs), a cause of severe hypertension, feature constitutive hormone production and unrestrained cell proliferation; the mechanisms linking these events are unknown. We identify two recurrent somatic mutations in and near the selectivity filter of the potassium (K+) channel KCNJ5 that are present in 8 of 22 human APAs studied. Both produce increased sodium (Na+) conductance and cell depolarization, which in adrenal glomerulosa cells produces calcium (Ca2+) entry, the signal for aldosterone production and cell proliferation. Similarly, we identify an inherited KCNJ5 mutation that produces increased Na+ conductance in a Mendelian form of severe aldosteronism and massive bilateral adrenal hyperplasia. These findings explain pathogenesis in a subset of patients with severe hypertension and implicate loss of K+ channel selectivity in constitutive cell proliferation and hormone production.
Article
Full-text available
During B-cell development, precursor B cells transiently express the pre-B-cell receptor composed of μ heavy chain complexed with VpreB and λ5 surrogate light chain polypeptides. Recent profiling studies unexpectedly revealed abundant transcripts of one member of the VpreB family, VpreB3, in a subset of mature B cells and Burkitt lymphoma. Here we used a novel antibody to investigate the normal expression pattern of VpreB3 protein in human hematopoietic and lymphoid tissues, and to determine whether VpreB3 could serve as a useful diagnostic biomarker for select B-cell lymphomas. We found that VpreB3 protein is normally expressed by precursor B cells in bone marrow and by a subset of normal germinal center B cells in secondary lymphoid organs. Among lymphoid malignancies, we found an association between VpreB3 expression and B-cell tumors with c-MYC abnormalities. VpreB3 was highly expressed in all cases of Burkitt lymphoma, whether of endemic or sporadic origin (44/44 cases, 100%), all cases of B-cell lymphoma, unclassifiable, with features intermediate between diffuse large B-cell lymphoma and Burkitt lymphoma (5/5 cases, 100%), and the majority of diffuse large B-cell lymphomas harboring a c-MYC translocation (15/18 cases, 83%). The expression of VpreB3 in diffuse large B-cell lymphomas without a c-MYC translocation was associated with c-MYC polysomy in 25/75 cases (33%) but only rarely observed in diffuse large B-cell lymphomas lacking a c-MYC abnormality (9/98 cases, 9%). We conclude that for B-cell tumors with features suggesting a possible c-MYC translocation, such as intermediate to large cell size and high proliferation rate, the presence of VpreB3 should prompt subsequent confirmatory genetic testing, whereas the absence of VpreB3 is virtually always associated with wild-type c-MYC alleles.
Article
Full-text available
Malfunction of the circadian clock has been linked to the pathogenesis of a variety of diseases. We show that mice lacking the core clock components Cryptochrome-1 (Cry1) and Cryptochrome-2 (Cry2) (Cry-null mice) show salt-sensitive hypertension due to abnormally high synthesis of the mineralocorticoid aldosterone by the adrenal gland. An extensive search for the underlying cause led us to identify type VI 3beta-hydroxyl-steroid dehydrogenase (Hsd3b6) as a new hypertension risk factor in mice. Hsd3b6 is expressed exclusively in aldosterone-producing cells and is under transcriptional control of the circadian clock. In Cry-null mice, Hsd3b6 messenger RNA and protein levels are constitutively high, leading to a marked increase in 3beta-hydroxysteroid dehydrogenase-isomerase (3beta-HSD) enzymatic activity and, as a consequence, enhanced aldosterone production. These data place Hsd3b6 in a pivotal position through which circadian clock malfunction is coupled to the development of hypertension. Translation of these findings to humans will require clinical examination of human HSD3B1 gene, which we found to be functionally similar to mouse Hsd3b6.
Article
Full-text available
The Lurcher mutation transforms the GRID2 receptor into a constitutively opened channel. In Lurcher heterozygous mice, cerebellar Purkinje cells are permanently depolarized, a characteristic that has been thought to be the primary cause of their death, which occurs from the second postnatal week onward. The more dramatic phenotype of Lurcher homozygotes is thought to be due to a simple gene dosage effect of the mutant allele. We have analyzed the phenotype of Lurcher/hotfoot heteroallelic mutants bearing only one copy of the Lurcher allele and no wild-type Grid2. Our results show that the absence of wild-type GRID2 receptors in these heteroallelic mutants induces an early and massive Purkinje cell death that is correlated with early signs of autophagy. This neuronal death is independent of depolarization and can be explained by the direct activation of autophagy by Lurcher GRID2 receptors through the recently discovered signaling pathway formed by GRID2, n-PIST, and Beclin1.
Article
Full-text available
T cells may encounter glutamate, the major excitatory neurotransmitter in the nervous system, when patrolling the brain and in glutamate-rich peripheral organs. Moreover, glutamate levels increase in the CNS in many pathological conditions in which T cells exert either beneficial or detrimental effects. We discovered that normal human T cells, human T leukemia cells, and mouse anti-myelin basic protein T cells express high levels of glutamate ion channel receptor (ionotropic) of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) subtype 3 (GluR3). The evidence for GluR3 on T cells includes GluR3-specific RT-PCR, Western blot, immunocytochemical staining and flow cytometry. Sequencing showed that the T cell-expressed GluR3 is identical with the brain GluR3. Glutamate (10 nM), in the absence of any additional molecule, triggered T cell function: integrin-mediated T cell adhesion to laminin and fibronectin, a function normally performed by activated T cells only. The effect of glutamate was mimicked by AMPA receptor-agonists and blocked specifically by the selective receptor-antagonists 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and 6-nitro-7-sulfamoylbenzo[f]quinoxalin-2,3-dione (NBQX), and by relevant anti-integrin mAbs. Glutamate also increased the CXCR4-mediated T cell chemotactic migration toward the key chemokine CXCL12/stromal cell-derived factor-1. GluR3 expression on normal, cancer and autoimmune-associated T cells and the ability of glutamate to directly activate T cell function could be of substantial scientific and clinical importance to normal neuroimmune dialogues and to CNS diseases and injury, and especially to: 1) T cell transmigration to the CNS and patrolling in the brain, 2) T cell-mediated multiple sclerosis, and 3) autoimmune epilepsy, as neurotoxic anti-GluR3 Abs are found and suspected to cause/potentiate seizures and neuropathology in several types of human epilepsies. Thus far, GluR3 was found only on neurons and glia cells; our results reveal a novel peripheral source of this antigenic receptor.
Article
Full-text available
The VpreB3 gene product was first characterized as an immunoglobulin (Ig) mu heavy chain-binding protein in mouse precursor B (pre-B) cells. Although its function is unknown, it has been proposed to participate in the assembly and transport of the pre-B cell receptor. We have identified a VpreB3 orthologous gene in chicken that is located close to the immunoglobulin light chain (LC) gene cluster and specifically expressed in the bursa of Fabricius. By overexpressing VpreB3 in the DT40 IgM(+) immature chicken B cell line, we have characterized VpreB3 as an endoplasmic reticulum-resident glycoprotein that binds preferentially to free IgLC. However, binding to IgHC is observed in IgLC-deficient DT40 cells. Interaction of VpreB3 with free IgLC is partly covalent and induces retention of free IgLC in the endoplasmic reticulum, preventing their secretion without affecting IgM surface expression. Our results demonstrate that this evolutionarily conserved molecule may play a role in the regulation of the maturation and secretion of free IgLC in B cells. We discuss possible implications in the regulation of the immune response.
Article
Full-text available
Angiotensin-II (Ang-II) regulates adrenal steroid production and gene transcription through several signaling pathways. Changes in gene transcription occur within minutes after Ang-II stimulation, causing an increase in aldosterone production and subsequent increase in the overall capacity to produce aldosterone. Our goal was to compare the Ang-II regulation of early gene expression and confirm the up-regulation of selected genes using quantitative real-time RT-PCR (qPCR) across three species, such as, human, bovine, and rat. Microarray analyses were performed using samples from control and Ang-II (10 nM)-treated (1 h) cells from human adrenocortical tumor cell line H295R, and primary adrenal glomerulosa cells from bovine and rat, applied respectively to human, bovine, and rat chips. qPCR was performed to confirm up-regulation of selected genes using mRNA. The microarray comparison revealed 18% similarity among the top 50 up-regulated genes, with human/rat, 20%; human/bovine, 36%; and rat/bovine, 26% similarity. The gene list generated by this comparison included: activating transcription factor 3, B-cell translocation gene (BTG2), Nuclear receptor subfamily 4, group A, member 1 (NR4A1), NR4A2, NR4A3, early growth response 1, v-fos FBJ murine osteosarcoma viral oncogene homolog (c-FOS), FOSB, and Jun family member B (JUNB). Pretreatment of H295R cells with cycloheximide had no effect on Ang-II induction of these genes, suggesting that they are direct targets of Ang-II signaling. The Ang-II gene targets have been defined in three different adrenocortical model systems. Several of the listed genes have previously been described as being key regulators of adrenocortical function. The presence of adrenal cell common genes in such distinct cell models strengthens the hypothesis that these genes are regulators of aldosterone production.
Article
Full-text available
Accurate localization of aldosterone-producing adenoma (APA) is essential for the treatment of primary aldosteronism (PA). In order to confirm the clinical usefulness of adrenal venous sampling (AVS), we retrospectively studied 87 cases of PA in whom AVS was conducted. We collected right and left adrenal venous effluents simultaneously before and after adrenocorticotropic hormone (ACTH) stimulation for measurements of aldosterone concentration (A) and cortisol concentration (C). Based on AVS results, we judged 66 cases as having unilateral aldosterone hypersecretion and the remaining 21 cases as having no apparent laterality. Of the above 66 subjects, 61 underwent laparoscopic removal of the adrenal gland through a retroperitoneal approach. The presence of APA was histopathologically confirmed, and blood pressure decreased significantly with normalization of plasma aldosterone concentration (PAC) in all cases. The receiver operator characteristics (ROC) curve analysis between the operated and no-apparent-laterality groups revealed that the ratio of A/C on the higher side to A/C on the lower side (A/C ratio) after ACTH stimulation is a useful index, with a cutoff value of 2.6, a sensitivity of 0.98 and a specificity of 1.0. The ROC curve analysis between the APA side and contralateral side within the operated patients revealed that the cutoff value of A was 1,340 ng/dL, with a sensitivity of 0.92 and a specificity of 1.00. Our results indicate the usefulness of simultaneous AVS and ACTH stimulation for localizing APA.
Article
The terminal stages of cortisol and aldosterone production in the human adrenal gland are catalysed by the enzymes 11beta-hydroxylase and aldosterone synthase, which are encoded by the CYP11B1 and CYP11B2 genes respectively. Recent studies have suggested that aldosterone and cortisol are also made in other tissues such as the brain, heart and vascular system and may play a role in cardiovascular homeostasis. The aim of this study was to confirm the presence of these enzymes and localise them precisely in the rat brain. Reverse transcription-polymerase chain reaction (RT-PCR)/Southern blotting confirmed transcription of CYP11B1 and CYP11B2 in whole brain and hypothalamus minces from Wistar-Kyoto rats. 11beta-Hydroxylase and aldosterone synthase were immunolocalised in paraffin-embedded rat adrenal and brain sections using mouse monoclonal antibodies. Negative controls utilised a mouse monoclonal antibody raised against a non-mammalian epitope. In the brain, 11beta-hydroxylase and aldosterone synthase were detected in the cerebellum, especially the Purkinje cells, as well as the hippocampus. The specificities of the 11beta-hydroxylase and aldosterone synthase antibodies were confirmed by positive immunostaining of the relevant regions of the adrenal cortex. This is the first direct evidence that steroid hydroxylases involved in the final stages of corticosteroid biosynthesis are present in specific regions of the central nervous system.
Article
It has become important to evaluate the possible involvement of 3β-hydroxysteroid dehydrogenase type 1 (HSD3B1) and 2 (HSD3B2) isoforms in aldosterone-producing adenoma (APA). In this study, we studied 67 and 100 APA cases using real-time quantitative PCR (qPCR) and immunohistochemistry, respectively. Results of qPCR analysis demonstrated that HSD3B2 mRNA was significantly more abundant than HSD3B1 mRNA (P<0.0001), but only HSD3B1 significantly correlated with CYP11B2 (aldosterone synthase) (P<0.0001) and plasma aldosterone concentration (PAC) of the patients (P<0.0001). Results of immunohistochemistry subsequently revealed that HSD3B2 immunoreactivity was detected in the great majority of APA but a significant correlation was also detected between HSD3B1 and CYP11B2 (P<0.0001). In KCNJ5 mutated APA, CYP11B2 (P<0.0001) and HSD3B1 (P=0.011) were significantly higher than wild type APA. These results suggest that HSD3B1 is involved in aldosterone production, despite its lower levels of expression compared to HSD3B2, and also possibly associated withKCNJ5mutation in APA.
Article
The great majority of the cases clinically diagnosed as primary aldosteronism (PA) have been caused by aldosterone-producing adenoma (APA) or idiopathic hyperaldosteronism (IHA). The differential diagnosis of both subtypes of PA is important due to the different therapeutic modes but clinically it is sometimes difficult. It is also important to understand the morphological features of these two subtypes with special emphasis upon differences of the status for aldosterone biosynthesis. In the last decade, molecular mechanisms of PA including the aberrant expression of G-protein coupled receptors (GPCRs), key regulators of the intracellular calcium signaling pathway and somatic mutations of ion channels, have been revealed and our understanding of the molecular pathways involved in excessive aldosterone production has been markedly advanced. In addition, newly developed monoclonal antibodies specific to the isoform of adrenal steroidogenic enzymes have demonstrated the novel profiles of adrenal steroidogenesis in PA. These novel findings indicate that the molecular mechanisms on the onset and pathophysiology of PA are more complicated than previously considered and further clarification of clinical relevance of these findings is required at this juncture.
Article
Calcium channel blockers can efficiently be used in the treatment of primary aldosteronism (PA) related hypertension, but details on the localization of calcium channels (CCs) in the human adrenal and its disorders, including PA, have remained unclear. Therefore, in this study we analyzed the known α subunits of L-, N-, and T-type CCs in 74 adrenocortical aldosterone-producing adenomas (APA) and 16 cortisol-producing adenomas (CPA) using quantitative RT-PCR (qPCR). We also examined the status of L-(CaV1.2, CaV1.3), N-(CaV2.2) and T-(CaV3.2) CC subunits in five non-pathological adrenals (NA), five idiopathic hyperaldosteronism (IHA) cases, and 50 APA using immunohistochemistry. After qPCR evaluation, only CaV1.2, CaV1.3, CaV2.2, and CaV3.2 mRNA levels could be detected in APA and CPA. Among those, only CaV3.2 mRNA levels were significantly correlated with plasma aldosterone levels (P=0.0031), CYP11B2 expression levels (P<0.0001) and the presence of KCNJ5 mutations (P=0.0019) in APA. The immunolocalization of CCs in NA and IHA was detected in the zona glomerulosa (ZG), with a predominance of CaV3.2 in APA. These findings suggest that different types of CC can be involved in calcium-related aldosterone biosynthesis.
Article
Purkinje cell protein 4 (PCP4) is a calmodulin (CaM) binding protein that accelerates calcium association and dissociation with CaM. It has been previously detected in aldosterone-producing adenomas (APA) but details on its expression and function in adrenocortical tissues have remained unknown. Therefore, we performed the immunohistochemical analysis of PCP4 in the following tissues: normal adrenal (NA; n=15), APA (n=15), cortisol producing adenomas (CPA; n=15) and idiopathic hyperaldosteronism cases (IHA; n=5). APA samples (n=45) were also submitted to quantitative RT-PCR (qPCR) of PCP4, CYP11B1, and CYP11B2, as well as DNA sequencing for KCNJ5 mutations. Transient transfection analysis using PCP4 siRNA was also performed in H295R adrenocortical carcinoma cells, following ELISA analysis, and CYP11B2 luciferase assays were also performed after PCP4 vector transfection in order to study the regulation of PCP4 protein expression. In our findings, PCP4 immunoreactivity was predominantly detected in APA and in the zona glomerulosa (ZG) of NA and IHA. In APA, the mRNA levels of PCP4 were significantly correlated with those of CYP11B2 (P<0.0001) and were significantly higher in cases with KCNJ5 mutation than wild-type (P=0.005). Following PCP4 vector transfection, CYP11B2 luciferase reporter activity was significantly higher than controls in the presence of angiotensin-II. Knockdown of PCP4 resulted in a significant decrease in CYP11B2 mRNA levels (P=0.012) and aldosterone production (P=0.011). Our results indicate that PCP4 is a regulator of aldosterone production in normal, hyperplastic and neoplastic human adrenocortical cells.
Article
Metallothionein-3 (MT-3) is an intracellular, low molecular weight protein mainly distributed in the central nervous system but also in various peripheral organs and several types of human neoplasms. However, details of MT-3 expression have not been examined in human adrenal cortex and its disorders. The mRNA levels of MT-3 were first evaluated by quantitative RT-PCR (qPCR) in adrenocortical aldosterone-producing adenoma (APA: 11) and cortisol-producing adenoma (CPA: 14). In addition, MT-3 immunohistochemistry was performed in non-pathological adrenal glands (NA: 19), idiopathic hyperaldosteronism (IHA: 10), APA (20), CPA (24), adjacent non-neoplastic adrenal glands of adenoma (AAG: 20), and adrenocortical carcinoma (ACC: 8). H295R cells were also treated with angiotensin-II or forskolin in a time-dependent manner, and the changes of MT-3 mRNA levels were evaluated by qPCR. Results of qPCR analysis demonstrated that MT-3 mRNA levels were significantly higher in APA than CPA (P = 0.0004). MT-3 immunoreactivity was detected in the zona glomerulosa of NA, IHA, and AAG, as well as in APA, CPA, and ACC. When treated with angiotensin-II and forskolin, MT-3 mRNA levels reached a peak by 12 h in H295R cells, with significantly higher levels compared to control non-treated cells (P < 0.01). The presence of MT-3 in the ZG of NA, IHA, and AAG, as well as APA may imply a role in the pathophysiology of aldosterone-producing tissues.
Article
L-glutamate is a major excitatory neurotransmitter in the mammalian brain. Glutamate receptors have been reported in the rat adrenal cortex and in human aldosterone-producing adenomas (APA). However, details regarding the expression levels and functions of these receptors in human adrenocortical tissues remain unknown. The mRNA levels of glutamate receptors were evaluated by qPCR in: 12 normal adrenal cortex (NAC), 11 APA, and 12 cortisol-producing adenoma (CPA) tissues. Protein localization was evaluated by immunohistochemistry for 15 NAC, 5 idiopathic hyperaldosteronism cases, 15 APA and 15 CPA. H295R cells were treated with angiotensin-II or forskolin alone or combined with the GRM2/3 agonist LY354740. The level of GRM3 mRNA was higher in APA than in CPA (P=0.0086) or NAC (P=0.0022). GRM1, IGLUR2, and IGLUR3 were also detected in adrenocortical tissues. When added to angiotensin-II/forskolin treatments, LY354740 decreased aldosterone and cortisol production in H295R cells. GRM3 is considered to regulate steroidogenesis in adrenocortical tissues.
Article
To identify the genetic cause of a syndrome causing cerebellar ataxia and eye movement abnormalities. We identified 2 families with cerebellar ataxia, eye movement abnormalities, and global developmental delay. We performed genetic analyses including single nucleotide polymorphism genotyping, linkage analysis, array comparative genomic hybridization, quantitative PCR, and Sanger sequencing. We obtained eye movement recordings of mutant mice deficient for the ortholog of the identified candidate gene, and performed immunohistochemistry using human and mouse brain specimens. All affected individuals had ataxia, eye movement abnormalities, most notably tonic upgaze, and delayed speech and cognitive development. Homozygosity mapping identified the disease locus on chromosome 4q. Within this region, a homozygous deletion of GRID2 exon 4 in the index family and compound heterozygous deletions involving GRID2 exon 2 in the second family were identified. Grid2-deficient mice showed larger spontaneous and random eye movements compared to wild-type mice. In developing mouse and human cerebella, GRID2 localized to the Purkinje cell dendritic spines. Brain MRI in 2 affected children showed progressive cerebellar atrophy, which was more severe than that of Grid2-deficient mice. Biallelic deletions of GRID2 lead to a syndrome of cerebellar ataxia and tonic upgaze in humans. The phenotypic resemblance and similarity in protein expression pattern between humans and mice suggest a conserved role for GRID2 in the synapse organization between parallel fibers and Purkinje cells. However, the progressive and severe cerebellar atrophy seen in the affected individuals could indicate an evolutionarily unique role for GRID2 in the human cerebellum.
Article
A VpreB surrogate light (SL) chain was identified for the first time in a marsupial, the opossum Monodelphis domestica. Comparing the opossum VpreB to homologues from eutherian (placental mammals) and avian species supported the marsupial gene being VpreB3. VpreB3 is a protein that is not known to traffic to the cell surface as part of the pre-B cell receptor. Rather, VpreB3 associates with nascent immunoglobulin chains in the endoplasmic reticulum. Homologues of other known SL chains VpreB1, VpreB2, and λ5, which are found in eutherian mammals, were not found in the opossum genome, nor have they been identified in the genomes of nonmammals. VpreB3 likely evolved from earlier gene duplication, independent of that which generated VpreB1 and VpreB2 in eutherians. The apparent absence of VpreB1, VpreB2, and λ5 in marsupials suggests that an extracellular pre-B cell receptor containing SL chains, as it has been defined in humans and mice, may be unique to eutherian mammals. In contrast, the conservation of VpreB3 in marsupials and its presence in nonmammals is consistent with previous hypotheses that it is playing a more primordial role in B cell development.
Article
### K+ Channel Mutations in Adrenal Aldosterone-Producing Adenomas and Hereditary Hypertension Choi et al Science . 2011;331:768–772 A new report in Science finds that a few somatic KCNJ5 mutations explain a subset of aldosterone-producing adenomas, the most frequent secondary cause of arterial hypertension. Primary aldosteronism (PAL) is the most common secondary form of arterial hypertension, with an estimated prevalence between 6% and 10% and as high as 20% in patients with resistant hypertension.1,2 In the majority of cases, it is the result of either an adrenal aldosterone producing adenoma (APA) or a bilateral adrenal hyperplasia (also known as idiopathic hyperaldosteronism).3 However, the molecular mechanisms underlying aldosterone hypersecretion and nodulation of the adrenal cortex are still largely unknown. In this article,4 Lifton's group opens a completely new area by establishing the concept that recurrent somatic mutations at the KCNJ5 gene coding for the potassium channel Kir3.4 could account for a substantial proportion of APAs but also that a germinal KCNJ5 mutation can cause a very rare autosomal dominant and early-onset form of PAL, characterized by bilateral massive adrenal hyperplasia and referred to as FH-3.5,6 Using whole exome sequencing on four APA blood DNA pairs from unrelated subjects, the authors have identified somatic mutations of the KCNJ5 gene in two …
Article
PEP-19/PCP4 maps within the Down syndrome critical region and encodes a small, predominantly neuronal, IQ motif protein. Pep-19 binds calmodulin and inhibits calmodulin-dependent signaling, which is critical for synaptic function, and therefore alterations in Pep-19 levels may affect synaptic plasticity and behavior. To investigate its possible role, we generated and characterized pep-19/pcp4-null mice. Synaptic plasticity at excitatory synapses of cerebellar Purkinje cells, which express the highest levels of Pep-19, was dramatically altered in pep-19/pcp4-null mice. Instead of long-term depression, pep-19/pcp4-null mice exhibited long-term potentiation at parallel fiber-Purkinje cell synapses. The mutant mice have a marked deficit in their ability to learn a locomotor task, as measured by improved performance upon repeated testing on an accelerating rotarod. Thus, our data indicate that pep-19/pcp4 is a critical determinant of synaptic plasticity in cerebellum and locomotor learning.
Article
Primary aldosteronism (PA) is the most common form of endocrine hypertension affecting ∼8-10% of hypertensive subjects. Aldosterone production in PA occurs under low-renin conditions, and the mechanisms that maintain the production of aldosterone in PA remain unknown. Objective This study was designed to compare the transcript profiles between aldosterone-producing adenoma (APA) and their adjacent adrenal gland (AAG) from the same adrenal. Total RNA was extracted from ten APA and ten AAG; and subsequently analyzed by microarray and real-time quantitative RT-PCR (qPCR). The microarray data were paired for each APA-AAG, and analyzed by GeneSpring GX 11 with paired t-test and fold change calculations for each transcript. Changes identified by microarray analysis were confirmed by qPCR. Microarray analysis indicated that 14 genes had significantly up-regulated expression in APA compared to AAG. Among the elevated genes were aldosterone synthase (CYP11B2) as well as novel transcription factors, calmodulin-binding proteins, and other genes that have not been previously studied in APA. Selective analysis of 11 steroidogenic enzymes using microarray demonstrated that only CYP11B2 showed a significantly higher transcript level in APA compared to AAG (P<0.001). In contrast, AKR1C3 (17β-hydroxysteroid dehydrogenase type 5), CYP17 (17α-hydroxylase/17,20 lyase), and CYB5 (cytochrome b5) showed significantly lower transcript level in APA (P<0.05). The transcriptome analysis of APA compared with AAG showed several novel genes that are associated with APA phenotype. This gene list provides new candidates for the elucidation of the molecular mechanisms leading to PA.
Article
The aim of the study was to examine blood pressure and biochemical responses to unilateral adrenalectomy in patients with bilateral primary aldosteronism (PA) and identify predictive parameters. PA considered due to bilateral autonomous production of aldosterone is usually treated medically. Unilateral adrenalectomy has been considered ineffective. Because quality outcome data are lacking and medical treatment may cause adverse effects or fail to control hypertension, defining the role for unilateral adrenalectomy in bilateral PA is an important clinical issue. Between 1984 and 2004, 51 of 684 patients diagnosed with bilateral PA underwent unilateral adrenalectomy. This report is based on the records of the 40 considered suitable for inclusion, who were followed for at least 12 (median, 56.4) months. Hypertension was cured in 15% of patients and improved in 20%, usually within 1 yr of unilateral adrenalectomy. The proportion with controlled hypertension was significantly (P < 0.001) higher after adrenalectomy (65%) than before (25%). Mean systolic (P < 0.001) and diastolic (P < 0.001) blood pressure, left ventricular mass index (P < 0.05), plasma upright aldosterone (P < 0.05), and aldosterone/renin ratio (P < 0.001) fell. Serum creatinine independently predicted hypertension cure. Although this retrospective analysis of patients from a single center does not permit prediction of response rates among patients diagnosed elsewhere, it suggests that unilateral adrenalectomy can be beneficial in some patients with apparent bilateral PA and should not be dismissed as a treatment option.
Article
The discovery that lymphocyte subpopulations participate in distinct components of the immune response focused attention onto the origins and function of lymphocytes more than 40 years ago. Studies in the 1960s and 1970s demonstrated that B and T lymphocytes were responsible primarily for the basic functions of antibody production and cell-mediated immune responses, respectively. The decades that followed have witnessed a continuum of unfolding complexities in B-cell development, subsets, and function that could not have been predicted. Some of the landmark discoveries that led to our current understanding of B lymphocytes as the source of protective innate and adaptive antibodies are highlighted in this essay. The phenotypic and functional diversity of B lymphocytes, their regulatory roles independent of antibody production, and the molecular events that make this lineage unique are also considered. Finally, perturbations in B-cell development that give rise to certain types of congenital immunodeficiency, leukemia/lymphoma, and autoimmune disease are discussed in the context of normal B-cell development and selection. Despite the significant advances that have been made at the cellular and molecular levels, there is much more to learn, and cross-disciplinary studies in hematology and immunology will continue to pave the way for new discoveries.
Article
Although glutamatergic receptors are localized throughout the mammalian central nervous system (CNS), the specific cellular localization of the various glutamatergic receptor subtypes throughout human brain remains largely unknown. PCR fragments to human GluR1, GluR2, and GluR3 receptor subtypes were cloned and used as probes for in situ hybridization in order to examine the anatomical and cellular localization of glutamate receptor subtype gene expression in dissected regions of human postmortem brain tissue. Although hybridization was observed throughout the CNS, results indicated that the highest levels of hybridization were in the hippocampus, with localization primarily to cells in the pyramidal cell layer of the CA1-CA3 region, and the granular cells of the dentate gyrus. Prominent hybridization also was observed in the medium to large neurons of the cingulate cortex, temporal lobe, septum, and amygdala, as well as in scattered neurons in the thalamus, cerebral cortex, and medulla. A striking pattern of differential hybridization was observed within the cerebellum. GluR1 demonstrated light hybridization along the Purkinje/Bergmann glia layer, with GluR2 and GluR3 demonstrating hybridization to Purkinje cells, and GluR3 also to cells within the molecular layer, previously identified as stellate-basket cells. Changes in glutamate receptor function have been shown to be important in the pathogenesis of a number of neurological disorders. Therefore, an examination of glutamatergic receptor expression in human postmortem brain tissue may provide important information on the molecular basis of a variety of neurological and psychiatric disorders of the CNS.
Article
The pre-B cell receptor (pre-BCR) regulates pre-B cell expansion and allelic exclusion at the immunoglobulin (Ig) heavy chain locus and mediates the selection of Ig heavy chain variable gene segments. During the early phase of pre-BCR assembly in the mouse, the membrane Ig mu heavy chain transiently associates with the VPREB3 protein in the endoplasmic reticulum. Here, we present the human VPREB3 cDNA sequence and its B cell-specific expression in hematopoietic cell lines. We have localized this gene to chromosome 22q11 close to IGLL genes in human and to chromosome 10C in mouse.
Article
The terminal stages of cortisol and aldosterone production in the human adrenal gland are catalysed by the enzymes 11beta-hydroxylase and aldosterone synthase, which are encoded by the CYP11B1 and CYP11B2 genes respectively. Recent studies have suggested that aldosterone and cortisol are also made in other tissues such as the brain, heart and vascular system and may play a role in cardiovascular homeostasis. The aim of this study was to confirm the presence of these enzymes and localise them precisely in the rat brain. Reverse transcription-polymerase chain reaction (RT-PCR)/Southern blotting confirmed transcription of CYP11B1 and CYP11B2 in whole brain and hypothalamus minces from Wistar-Kyoto rats. 11beta-Hydroxylase and aldosterone synthase were immunolocalised in paraffin-embedded rat adrenal and brain sections using mouse monoclonal antibodies. Negative controls utilised a mouse monoclonal antibody raised against a non-mammalian epitope. In the brain, 11beta-hydroxylase and aldosterone synthase were detected in the cerebellum, especially the Purkinje cells, as well as the hippocampus. The specificities of the 11beta-hydroxylase and aldosterone synthase antibodies were confirmed by positive immunostaining of the relevant regions of the adrenal cortex. This is the first direct evidence that steroid hydroxylases involved in the final stages of corticosteroid biosynthesis are present in specific regions of the central nervous system.
Article
Self-tolerance is achieved by deleting or regulating self-reactive lymphocytes at a series of cellular checkpoints placed at many points along the developmental pathways to plasma cells and effector T cells. At each checkpoint, what are the molecular pathways that determine whether a lymphocyte remains quiescent, begins dividing, differentiates or dies? In splenic B cells, the decision between quiescence, tolerance by anergy, and activation provides a tractable setting to explore these issues by global gene expression profiling on DNA microarrays. Here we discuss the application of microarrays to illuminate a set of cell fate decisions that appear to be determined by summation of numerous small changes in expression of stimulatory and inhibitory genes. Many genes with known or predicted inhibitory functions are highly expressed in naive, quiescent B cells, notably the signal inhibitor SLAP and DNA-binding proteins of the Kruppel family (LKLF, BKLF, GKLF), Tsc-22, GILZ, Id-3, and GADD45. Activation of naive B cells, triggered by acute binding of antigen to the B-cell receptor, involves a rapid decrease in expression of these inhibitory genes. Promitotic genes are induced in parallel, including c myc, LSIRF/IRF4, cyclin D2, Egr-1 and Egr-2, as are the anti-apoptotic gene A1 and genes for the T-cell-attracting chemokines MIP-1alpha and beta. B-cell tolerance through the process of anergy, induced by chronic binding of self antigen, maintains expression of the inhibitory genes found in quiescent B cells and induces an additional set of inhibitory genes. The latter include inhibitors of signaling - CD72, neurogranin, pcp4 - and additional inhibitors of gene expression such as SATB1, MEF2C, TGIF and Nab-2. The effects of tolerance, the immunosuppressive drug FK506 and other modulators of calcium or MAPK signaling allow individual gene responses to be linked to different signal transduction pathways. The global molecular profiles obtained illustrate how quiescence and anergy are actively maintained in circulating B cells, how these states are switched to clonal expansion and how they could be better emulated by pro-tolerogenic drugs.
Article
Lurcher (lc) mice have a semi-dominant mutation in the gene encoding the delta2 glutamate receptor (GRID2). The resulting constitutive activity of this receptor in heterozygous +/lc (grid(+/lc)) and homozygous (grid(lc/lc)) mice leads to the death of all cerebellar Purkinje cells and most afferent granule neurons. Some studies have indicated that the death of Purkinje cells occurs by apoptosis, and the secondary loss of granule neurons has been shown to require the pro-apoptotic Bcl-2 family member Bax. The BH3-only protein Bim has been shown to contribute to cytokine withdrawal-induced apoptosis of sympathetic neurons and to be responsible for the kidney degeneration in mice lacking the pro-survival protein Bcl-2. Because Bim is expressed strongly in cerebellar Purkinje cells, we have examined whether it has a role in their death in mutant Lurcher mice. Our studies show that Bim deficiency does not modify the Lurcher phenotype, ruling out an indispensable role for Bim in this neurodegenerative disease.
Article
In order to help prioritize the selection of candidate genes and to study possible trait and not state related changes in gene expression, we compared lymphocytic gene expression patterns of five individual family members with schizophrenia and nine unaffected individuals from a large multiplex high density pedigree. We screened gene expression by microarray consisting of 1128 brain focused genes. Three criteria for selection of microarray gene differences between schizophrenia and unaffected family members were employed: a significant t-test, expression in a majority of subjects, and fold change magnitude. Gene expression levels were significantly different for nine genes between individuals with schizophrenia compared to unaffected controls, and two genes were validated by real-time PCR. The expression of the neuropeptide Y receptor Y1 gene (NPY1R localized at 4q31.3-q32) and the human guanine nucleotide-binding regulatory protein Go-alpha (GNAO1 localized at 16q13) was significantly decreased in individuals with schizophrenia compared to unaffected family controls by microarray and real-time PCR. The cytosolic malate dehydrogenase gene (MDH1 localized at 2p13.3) was also significantly increased by microarray analysis and showed a trend for increase by real-time PCR. The significant genes are discussed in terms of proximity to linkage regions, prior association studies of schizophrenia, and other reports of microarray screening of schizophrenia tissue. Evidence from these studies taken together with the present study suggests critical pathways in schizophrenia may be studied in peripheral tissue as part of the strategy in functional genomic convergence. This preliminary study needs to be repeated by screening a larger set of genes in additional families with schizophrenia. The present study offers support for examination of gene expression patterns using lymphocytic RNA for complex neuropsychiatric disorders from large cohorts of patients.
Article
The delta2 glutamate receptor (GluRdelta2) plays a crucial role in cerebellar functions; mice with a disrupted GluRdelta2 gene (GluRdelta2-/-) display impaired synapse formation and abrogated long-term depression (LTD). However, the mechanisms by which GluRdelta2 functions have remained unclear. Because a GluRdelta2 mutation in lurcher mice causes channel activities characterized by Ca2+ permeability, GluRdelta2 was previously suggested to serve as a Ca2+-permeable channel in Purkinje cells. To test this hypothesis, we introduced a GluRdelta2 transgene, which had a mutation (Gln618Arg) in the putative channel pore, into GluRdelta2-/- mice. Interestingly, the mutant transgene rescued the major functional and morphological abnormalities of GluRdelta2-/- Purkinje cells, such as enhanced paired-pulse facilitation, impaired LTD at parallel fibre synapses, and sustained innervation by multiple climbing fibres. These results indicate that the conserved glutamine residue in the channel pore, which is crucial for all Ca2+-permeable glutamate receptors, is not essential for the function of GluRdelta2.